REPORT ON

99 TREMONT STREET APARTMENTS 99 TREMONT STREET BRIGHTON, MASSACHUSETTS

DELIVERED TO

ST. JOHN'S SEMINARY BRIGHTON, MASSACHUSETTS

BY

Haley & Aldrich, Inc. Boston, Massachusetts

FOR

Saracen Properties Waltham, Massachusetts

File No. 41058-011 7 October 2014

Haley & Aldrich, Inc. 465 Medford St. Suite 2200 Boston, MA 02129

Tel: 617.886.7400 Fax: 617.886.7600 HaleyAldrich.com

7 October 2014 File No. 41058-011

Mr. Henry St. Hilaire Saracen Properties 41 Seyon Street - Suite 200 Waltham, Massachusetts 02453

Subject: Effects of the Proposed Residential Development at 99 Tremont Street On The St. John's Seminary Property Located at 676 and 680 Washington Street Brighton, Massachusetts

Dear Mr. St. Hilaire:

In accordance with your request, Haley & Aldrich has performed an evaluation of selected geotechnical aspects of the subject development, in response to issues raised by St. John's Seminary in a letter dated 2 June 2014 (copy provided in Appendix A). The results of the evaluation are summarized herein.

SITE CONDITIONS

The 99 Tremont Street project site consists of an approximately 40,000 sq. ft parcel of land that was previously occupied by an apartment building that was destroyed by fire. To the west of the site, the seven-story Brighton Gardens apartment building occupies the property at 111 Tremont Street. An undeveloped wooded lot with mature trees is located to the east of the site, and the former Church of Our Lady of the Presentation (now St. John's Seminary Conference Center) is located on Washington Street to the north. The site and surrounding properties are shown on the aerial photograph in Exhibit A.

Topography rises quickly in the rear half of the 99 Tremont property, to an elevation approximately 46 feet above Tremont Street. The eastern side of the property abuts a 300-foot long stairway, which connects Tremont and Washington Streets. The site was significantly modified in the 1970s in connection with construction of the former residential structure. Remnant foundations and retaining walls remain visible in the rear half of the site.

PROPOSED CONSTRUCTION AT 99 TREMONT STREET

The proposed 99 Tremont Street development consists of the construction of a multi-level residential building having its ground floor near Tremont Street grade (El. 71, Boston City Base) and its rear wall in close proximity to the joint property line with St. John's. Due to the significant rise in topography toward St. John's, construction of the building will involve a two-tiered excavation, up to about 45 ft in

total depth, near the property line. Temporary and permanent lateral support of the excavation will be required along the St. John's property line.

To create a stiff, permanent retaining wall system and limit ground movements, the wall along St. John's is planned to be constructed as a shotcrete-faced soil nail system. The soil-nail system is described in detail in a following section of this report. If permission is granted by St. John's, the soil nail anchorage elements would extend about 15 ft laterally into the St. John's Seminary's property, as illustrated on Exhibit B. Should St. John's deny permission to access their property, a soil modified nail system will still be installed; however, the nails would extend to, but not extend over, the property line. Although an easement from St. John's is not required, it would allow a lower cost solution to the developer as the longer soil nails would enable a less complicated project design.

SITE SUBSURFACE SOIL AND GROUNDWATER CONDITIONS

In connection with the previous land owner's proposed and permitted project, a subsurface investigation was performed at the site in 1999 consisting of 15 test borings and 5 test pits. Results of the investigation program indicated variable thicknesses of fill soil immediately below ground surface. Very dense naturally-deposited Glacial Till, consisting of silty fine sand with gravel and cobbles was encountered beneath the fill. Bedrock was not encountered in any of the explorations, which extended up to 20 ft below lowest site grades. Due to their high density and silty nature, the glacial till soils have relatively low permeability and are very stable, competent materials that resist movements due to excavations.

A supplemental subsurface investigation was performed in September 2014 to aid final design and construction of the 99 Tremont Street project. This investigation, which included one test boring on St. John's property, confirmed that subsurface soil conditions consist of miscellaneous fill overlying very dense glacial till. Data obtained in the recent supplemental the explorations are provided in Appendix B.

As part of the recent exploration program, two groundwater observation wells were installed to obtain site-specific information on groundwater levels. One well (HA14–B01OW) is located on St. John's property, and one (HA14–B07OW) is located in the lower portion of the 99 Tremont site, as shown on the Exploration Location Plan in Appendix B. As expected, water levels measured in the wells were relatively deep, and significantly below the St. John's Church structure basement. In HA14–B01OW on the St. John's property, water was detected at approximately El. 86, about 28 ft below the Church basement floor which is finished at about El. 114. In HA14–B07OW, the water level was measured approximately 20 ft below ground surface, at El. 52. The trend of declining water elevations in the direction from St. John's toward Tremont Street is consistent with the topography and soil conditions, and is illustrated on Exhibit B.

RESPONSE TO ISSUES RAISED BY ST. JOHN'S

The following sections of the report describe the results of our evaluations of potential impacts to:

- Groundwater levels, as affecting the St. John's Church or property
- Buildings on the St. John's property
- Future use of the St. John's property

Impacts to Off-Site Groundwater

Background

Based on discussions with St. John's representatives, we understand that the Seminary Church building has experienced water infiltration into its basement, possibly more frequently in the recent past. As noted above, normal groundwater is well below the Church basement floor elevation. Accordingly, the basement water infiltration is not a result of groundwater.

On 7 August 2014, Haley & Aldrich visited the site to observe the conditions around the Seminary building. Based on observations during the site visit and the known subsurface conditions, various factors contribute to the water infiltration including the following:

- The ground surface around the Church slopes severely downward toward the basement on the east and west sides of the structure. Paved steps and landing slabs also decline downward toward the building. Water from precipitation and snowmelt flow overland down the slopes, accumulates against the basement walls, infiltrates into the ground next to the basement, and leaks into the building.
- The Church basement is surrounded by backfill against the walls and then the natural glacial till soils. The low permeability of the glacial soils, in combination with the backfill which has much higher permeability, creates a condition where the water infiltrating from ground surface gets trapped against the basement walls, facilitating leakage into the basement ("bathtub effect"). Under these conditions, the infiltration and leakage is often related to rain storms and during freeze-thaw conditions in late winter/early spring.
- The Boston Water and Sewer Commission (BWSC) has recently directed that the Church roof leader pipes be disconnected from the City storm drain system. On an interim basis, the pipes now discharge the water onto the ground in the vicinity of the structure. This discharge contributes to the water infiltration immediately around the Church. St. John's is planning to redirect the roof discharge to a drainage swale at the southwest corner of its property in the near future. Directing the roof runoff away from the building and into the drainage swale over 50 ft away from the Church could help reduce the basement infiltration.

Construction Effects on Off-Site Groundwater

The planned retaining wall near the common property line will be constructed with a permanent drainage system over the entire height of the wall. The drain will intercept any subsurface water immediately behind the wall and direct it to the 99 Tremont Street stormwater management system. The stormwater management system will include conventional subsurface infiltration chambers ("dry wells") located in the lower area of the 99 Tremont Street site, over 200 ft away from and 50 ft (in elevation) below the St. John's property.

By intercepting and draining any water that reaches the wall, the wall cannot cause any mounding or "damming" of water. It therefore cannot cause a rise in groundwater levels on the St. John's property. Rather, if it has any effect, the drained wall can only serve to lower the groundwater level at the property line. Such lowering of the groundwater could not adversely affect the Church water infiltration problem; if it has any effect, it would be to beneficially lower water levels on the St. John's property.

To demonstrate the effects described above, we have performed groundwater modeling of current and post-construction groundwater conditions. For analyses purposes, we conservatively assumed the groundwater elevation 4 ft above where we have observed in the recently installed observation wells, and then modeled the effect of installing the wall and its drainage system. The results of the modeling confirm that groundwater levels would be lowered as a result of the 99 Tremont Street wall construction. The results of the modeling are included in Appendix C.

Impacts to Buildings on St. John's Property

Planned Construction Methodology

The proposed construction will involve excavation into the existing slope and removal of the former building foundation system and retaining walls. A soil nail wall, described below, will be installed to support the soil as the excavation proceeds. A soil nail system was selected due to its stiffness and its ability to control movements of ground behind the wall and be protective of the Church property.

Soil Nail Wall System

Soil nail wall systems have been used successfully in the United States and throughout the world since the 1960s. Soil nailing involves reinforcement of the ground by installing closely spaced steel bars (i.e., nails) which are encased in cement grout. As excavation proceeds from top to bottom, soil nails are installed in rows about 5 ft apart (vertically and horizontally), steel mesh reinforcement is affixed to the excavation face, and then fluid concrete ("shotcrete") is spray-applied applied to the excavation face to provide face stability. Prior to application of the shotcrete, a drainage layer is installed against the excavated soil face. The drainage layer typically consists of a non-woven filter fabric wrapped around a solid formed polymeric core. The filter fabric is selected based on the soil conditions to retain soil particles while allowing water to freely enter the flow channel (polymeric core). This drainage layer removes any water that reaches the back of the wall and prevents the buildup of hydrostatic (groundwater) pressures behind the wall.

Soil nails are installed on a slight downward batter (on the order of 15 to 20 degrees) by drilling 4 to 8in. diameter holes using one of several drilling methods, selected depending on the competency of the soil and sensitivity of adjacent structures. Once the drill hole is completed, a steel bar (the "nail") is inserted and the hole is filled with a cement grout.

Haley & Aldrich has been involved with the construction and design of many soil nail walls throughout New England. One example is the Everett High School in Everett, Massachusetts that was constructed to retain a deep excavation using permanent soil nails in glacial till soils similar to those present at the subject site. The permanent soil nail wall is 48 ft high with a shotcrete (spray-applied concrete) face. Haley & Aldrich designed the wall and monitored its performance during construction. Appendix D provides a plot of the horizontal movement of the soil behind the soil nail wall versus depth along with photos of the wall during various stages of construction. The maximum lateral movement of the soil nail system was approximately 0.3 inch, occurring at the very top of the wall in fill soils that overlie the glacial till. This magnitude of movement is typical and consistent with numerous case studies across the United States in dense glacial soil. Additional case study examples are provided in Appendix E for reference. Soil nail systems have proven to be very effective in limiting ground movements and protecting nearby facilities.

Anticipated Movement of the Soil Nail Wall and Church Structures

When an excavation is made, the soils behind it can move. Under otherwise similar conditions, the movements will be greater if the soils are weak (e.g., clay) and smaller if the soils are strong (such as the site glacial till). A steep excavation requires lateral support, for safety of workers and to prevent raveling or other movements of the soil. In some cases, steel sheeting or similar systems such as soldier piles are installed before making the excavation. At the subject site, the glacial till soils are too dense to drive sheeting or other systems, and their installation would cause very high vibrations which could be detrimental and disruptive.

A soil nail wall system can be installed in such conditions with essentially no vibrations, very low noise, and result in little or no movements of the ground and structures behind the wall (typically less than $\frac{1}{2}$ inch). Ground movements are small with a soil nail system, in part, because the system actually further stiffens the existing soil behind the wall. Soil nailing in combination with the very dense glacial till results in wall systems with very favorable performance.

Experience and analyses on many soil nail excavation projects has shown that any ground movements behind the wall are usually greatest immediately behind the wall and in the zone of the soil nails, and quickly diminish with distance away from the soil nails. In stiff, granular soils such as glacial till, essentially all the movement occurs as the excavation is made.

In situations where the ground moves significantly, structures in close proximity behind the wall can settle. As described above, experience has proven that an excavation with a soil nail wall system results in very little movement of the ground and the wall itself, especially in favorable soil conditions such as exist at the subject site.

Three structures on the St. John's site exist in general proximity to the proposed soil nail-supported wall – a single-story garage at a distance of about 16 ft, the Church at a distance of about 70 ft, and the

rectory building about 160 ft. As illustrated on Exhibit B, the proposed soil nails would extend slightly beneath the garage but their ends will be greater than 50 ft from the Church and even further from the rectory. To demonstrate the favorable anticipated performance, we have performed analyses to estimate movements of the soil nail wall and the St. John's structures, as described below.

Soil Nail Wall Movement

Based on extensive research, the Federal Highway Administration has developed a state-of-practice methodology for making a conservative estimate of soil nail wall deflections, using the following equation:

$$\delta_h = (\delta_h/H)\iota \times H$$
 where:

 $(\delta_h/H)\iota$ = ratio dependent on the soil conditions (for our site 1/1000⁻¹) H = wall height or wall segment height (30 ft for the planned two-tiered soil nail wall system)

This equation yields a maximum wall movement of 0.36 in. at the top of the wall, and diminishing to essentially zero at the bottom. This is a conservative methodology and the resultant estimate of wall movement is very small because of the existing dense glacial soils. The size of the zone of influence where noticeable ground deformation may take place is defined by a horizontal distance behind the soil nail wall (D_{DEF}) and can be estimated with the following expression:

 $D_{DEF}/H = C (1 - \tan \alpha)$ where:

 α = the wall batter angle C = a coefficient based on soil type (1.25² for this site)

For the subject site, the wall will be essentially vertical, and the zone of potential ground deformations behind the wall is equal to 1.25 times the wall height. With the tiered wall system, this zone may extend approximately 38 ft behind the wall which corresponds to 28 ft beyond the property line onto St. John's property. The magnitude of vertical ground deformation immediately behind the wall is normally 50 to 100 percent of the horizontal wall movement. Accordingly, the analysis indicates that ground settlements could be up to about 0.36 in. immediately behind the wall and decrease to essentially zero at about 38 ft behind the wall.

Structure Movements

The Church and Rectory are located at least 70 ft from the soil nail wall, and significantly outside the zone of potential ground movements (zone within about 28 ft from the property line). Accordingly, the Church and Rectory are outside the zone where settlements or other adverse effects of the planned construction could occur.

 $^{^2}$ Section 6.5 of the FHWA Soil Nail Design Manual provides ratios of C for various soil conditions. For stiff soils this value is 1.25

 $^{^1}$ Section 6.5 of the FHWA Soil Nail Design Manual provides ratios of δ_h/H for various soil conditions. For stiff soils this value is 1/1000

The analyses described above indicate that ground settlements on the order of ¹/₄ in. could occur at the near wall of the garage, tapering to near zero at the far wall of the garage. The garage is likely to be supported on shallow spread footing foundations that would be subject to any ground settlements. Accordingly small calculated differential settlements, on the order of ¹/₄ in., could be experienced by the garage. This magnitude of settlement should not have any structural or operational impact on the garage, but could cause some minor architectural cracking of the garage foundation wall.

Monitoring During Construction

It is common to install and monitor instrumentation on an earth retention wall and/or the soil behind the wall, as well as on any structures in the vicinity of an excavation, to confirm the performance of the excavation and enable adjustments to construction procedures if warranted. With the permission of St. John's, it is planned to install elevation reference point on each of the St. John's structures and monitor them frequently throughout the period of excavation and soil nail wall installation to detect any movements. In addition, an inclinometer (device to measure the lateral movement of soil) is planned to be installed behind the proposed soil nail wall next to the garage to detect and document any lateral movements of the soil on the St. John's property. This instrumentation program would provide very useful documentation on any movements, and facilitate decision making during construction in the event movements are detected.

IMPACTS TO FUTURE USE OF ST. JOHN'S PROPERTY

As noted above, soil nails required to support the wall would need to extend approximately 15 ft beyond the property line onto St. John's property as shown on Figure 1. The top row of nails at the property line would be approximately 8 to 9 feet below grade, and on the order of 15 feet below grade at their ends. The soil nails must continue to provide lateral support to the 99 Tremont Street retention system on a permanent basis, and would continue to do so as long as they are not physically damaged or the soil in their immediate vicinity is not disturbed.

Specifically, the nails must not be removed, severed, displaced or damaged by direct impact. Proposed excavation deeper than 2 ft below existing grades or within the zone of support behind the nails should be evaluated on case by case basis to confirm that the integrity of the soil nail system is maintained. The zone of support is defined by imaginary lines extending downward and outward (away from the soil nails) on a 1H:1V slope from points on the current ground surface above the ends of the nails (i.e., approximately 15 ft from the property line). Essentially, the nails and the soils around them must remain undisturbed by construction or other activity.

Subject to the above restrictions, buildings or other structures supported on spread footing or slab foundations could be positioned above the nails without compromising the soil nail system.

SUMMARY

The 99 Tremont Street project is being designed to be protective of the St. John's Seminary property and structures. State-of-practice methods are planned for making and supporting the required building excavation, to control ground movements and avoid adverse impacts. No impacts to the Church and Rectory are anticipated due to the proposed construction. Any impacts to the garage are expected to be very minor and architectural in nature. Groundwater levels on the St. John's property will not be raised due to construction of the soil nail wall or the proposed building. Existing infiltration into the Church basement will not be worsened, but rather might actually be improved. Soil nails must be maintained permanently but their presence would not prevent overlying building construction in the future.

CLOSURE

This report describes anticipated performance of the excavation at 99 Tremont Street and its potential impacts on the St. John's Seminary property and structures. Please do not hesitate to contact the undersigned if you wish to discuss the information provided herein or any aspect of the proposed construction.

Sincerely yours, HALEY & ALDRICH, INC.

Danvar R. Sudu

Damian R. Siebert, P.E. Lead Underground Engineer

Steven R. Kraemer, P.E. Senior Vice President

Enclosures:

Exhibit A – Site Plan Exhibit B – Typical Soil Nail Wall Cross Section Appendix A – Monsignor Moroney 2 June 2014 Letter Appendix B – Recent Subsurface Explorations Appendix C – Groundwater Modeling Results Appendix D – Everett High School Soil Nail Wall Appendix E – Soil Nail Wall Case Study

G:\41058\011 - St. John's Support\2014-1006 HAI 99 Tremont StJohnsReport-F.docx

REFERENCES

1. Federal Highway Administration Engineering Circular No. 7, "Soil Nail Walls" dated March 2003.

G:\41058\011 - St. John's Support\2014-1006 HAI 99 Tremont StJohnsReport-F.docx

99 TREMONT STREET BRIGHTON, MASSACHUSETTS

SITE PLAN

SCALE: AS SHOWN OCTOBER 2014

APPENDIX A

Monsignor Moroney 2 June 2014 Letter

OFFICE OF THE RECTOR

2 June 2014

Henry St. Hilaire, Director of Construction Saracen Properties 41 Seyon Street, Suite 200 Waltham, MA 02453

Re: 99 Tremont Street, Brighton, MA 02135

Dear Mr. St. Hilaire:

It was a pleasure meeting you several weeks ago at the community meeting regarding your firm's proposal to construct an apartment building at 99 Tremont Street, Brighton, MA ("hereinafter 99 Tremont Street"). I look forward to future meetings and discussions and collaborating with your firm on the matter.

Pursuant to my responsibilities and obligations as the Rector of Saint John's Seminary, however, I write to raise concerns regarding your development and construction of an apartment structure at 99 Tremont Street. Please be advised that my instant correspondence does not limit, under any circumstances, any of Saint John's Seminary's future legal causes of action, remedies, or rights in this matter. I write to raise present, known concerns about your proposed construction at a property directly abutting Seminary property.

I have become aware of a proposal pursuant to which your firm suggests that its construction of an apartment building at 99 Tremont Street potentially include soil nails extending between twelve and twenty-one feet underground across Saint John's Seminary's property line. As you know, Saint John's Seminary has not granted an easement for the installation of said underground "soil nails," which either your structural engineer and/or geotechnical engineer has proposed for the support of any structure or construction at 99 Tremont Street. Saint John's Seminary maintains its legal right to grant or deny said easement subject to reasons and/or conditions which it alone finds reasonable and acceptable. Subject to its right to grant or deny an easement to Saracen Properties across property boundaries for the construction of an apartment building at 99 Tremont Street, Saint John's Seminary hereby requests the following from your firm:

First, Saint John's Seminary requests that Saracen Properties conduct a geotechnical investigation into any impact that construction of an apartment building at 99 Tremont Street will have on water levels and tables of the two abutting properties. I have reviewed your nine page agenda from a May 27, 2014 community meeting ("Oak Square Meeting"). Your firm states in said agenda that it has "not performed any recent geotechnical investigations." Despite the same, however, your firm alleges that its construction of a new building at 99 Tremont Street "will not exacerbate" any current water "problem." Your firm relies upon previous test pits and/or borings which it states McPhail Engineering conducted. Your firm has not provided Saint John's Seminary with the results of these tests, the conditions under which McPhail Engineering conducted the tests, or even when McPhail Engineering conducted them. Your agenda, however, indicates that they are not "recent." Saint John's Seminary is, therefore, not satisfied with your firm's conclusory statement that any construction will not exacerbate any water table issues on its property.

Second, Saint John's Seminary requests that Saracen Properties conduct an engineering investigation into any impact that construction of an apartment building at 99 Tremont Street will have on buildings, and the structural integrity of the same, on property which Saint John's Seminary owns. Saint John's Seminary raises herein the concern that construction of an apartment building at 99 Tremont Street will negatively impact the structural integrity of its buildings on its property, which directly abuts your proposed construction. Saint John's Seminary seeks assurances that construction of an apartment building at 99 Tremont Street will not impair the structural integrity of its property and buildings or prevent any future decision it may make to sell its land and structures or build upon the same. Without sufficient assurances, and supporting documentary, engineering proof thereof, Saint John's Seminary will not consider granting an easement to for the construction of an apartment building at 99 Tremont Street.

Third, at this current time, Saint John's Seminary questions your legal title to and ownership of a set of stairs adjacent to or built upon the lot directly abutting the lot located at 99 Tremont Street. Saint John's Seminary questions whether the Roman Catholic Archdiocese of Boston, Saint John's Seminary, or your client / firm owns said stairs. As a result, Saint John's Seminary requests that Saracen Properties conduct and provide proof of a complete title examination of the properties.

If either the Roman Catholic Archdiocese of Boston or Saint John's Seminary owns these stairs, Saint John's Seminary questions how construction of an apartment building at 99 Tremont Street, Brighton, MA will impact the structure and integrity of said stairs.

Further, if Saint John's Seminary owns the stairs, it raises the concern regarding use, liability for, and maintenance of said stairs if they remain part of your proposed apartment building property plans. The existence of stairs adjoining the two properties would invite trespassers onto Saint John's Seminary property and cause Saint John's Seminary insurance liability for any trespassers, invitees, or licensees on its property.

Again, Saint John's Seminary does not restrict any legal cause of action, remedy, or right it may have in raising the preliminary concerns, which I list above. Saint John's Seminary reserves the right to amend or supplement any of the issues it raises above in any future correspondence and/ or legal action. Saint John's Seminary, further, reserves the right to raise other issues, not addressed herein, in any future, potential legal matter regarding this issue.

I understand that there is another community meeting in June, 2014 regarding this matter. Please provide any and all requested documentation prior to the June, 2014 community meeting such that I may review and consider the same.

Please do not hesitate to contact me with any questions, comments, or concerns regarding this correspondence. Please, however, direct any and all questions, comments, or concerns to me in writing at the above address.

In the Lord,

L. Fano P. Mover

Monsignor James P. Moroney Saint John's Seminary, Rector

 cc: Honorable Mayor Martin J. Walsh, City of Boston Brian Golden, Director, Boston Redevelopment Authority Zoning Board of Appeals, City of Boston Brighton Allston Improvement Association Attorney Joseph P. Hanley Justin Pelland, LEED Green Association, Project Coordinator Attorney Michael Ruane, Saint John's Seminary

APPENDIX B

Recent Subsurface Explorations

Exploration Location Plan Boring Logs HA14-B01(OW) through HA14-B07(OW)

APPROXIMATE LOCATION HA14-BO1 (OW) HA14-BO1 HA14-BO BY HALEY & ALDRICH PERSONNEL IN SEPTEMBER 2014. (OW) INDICATES AN **OBSERVATION WELL WAS** INSTALLED IN THE COMPLETED BORING

99 Tremont Street Brighton, Massachusetts

Exploration Location Plan

H A	HAL LD	EY& RIC	H				TEST	BORING REPOR	RT		I	Bo	rin	g١	No.	H	[A1 (C	4-])W	B0 :)	1
Proj Clie Cor	ject ent ntracto	99 SA r NE	TREM RACE EW HA	IONT EN PRO AMPSH	STR OPEI HIRE	EET, BI RTIES BORIN	RIGHTON G, INC.	N, MA			File Sh Sta	e No leet art	o. No	4 1 17	1058 of Sept	3-01 3 teml	.0 ber 2	201	4	
			(Casing	S	ampler	Barrel	Drilling Equipment	and Procedures		⊢ir Dr	iller		To	m Se	chae	efer	2014	+	
Тур	е			HW		S		Rig Make & Model: CMI	E75, truck, track		H8	ka f	Rep).	A.	Fle	emir	ıg		
Insic	de Dian	neter (i	in.)	4.0		1 3/8		Drill Mud: None			Ele Da	evat atum	tion า		11 B0	8.0 CB				
Ham	nmer V	/eight	(lb)	300		140	-	Casing: 4 in. driven 45 ft. Hoist/Hammer: Cat-Head	l Safety Hammer	ľ	Lo	cati	on	S	lee I	Plan				
Han	nmer F	all (in.)	24		30	-	PID Make & Model: The	rmo MiniRAE											
Depth (ft)	Sampler Blow per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	USCS Symbo	Well Diagram	Stratum Change Elev/Depth (ft)	V (Der	ISUAL-MANUAL IDENTIFICAT nsity/consistency, color, GROUF structure, odor, moisture, o GEOLOGIC INTERF	ION AND DESCRIPTION NAME, max. particle size ¹ ptional descriptions RETATION)		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness a	Plasticity Sal	Strength 1
- 0 -						•	¥7 1	-FILL-			5	10	_	25	20	25				
-	15 37 33 18	S1 16	2.0 4.0	SM		•	Note: D	se tan to light brown silty SAN ructure, no odor, dry, trace roo	D with gravel (SM), mps (protectors p).7) ppm	2	10	5	25	30	25				
- 5 -						113.0	Note: D	The action indicates a coopie inc	m 4.2 ft to 4.7 ft.											
-	5 5 8 10	S2 15	5.0 7.0	SM		5.0	Medium odor, dry	dense tan silty SAND (SM), mj	ps 0.3 in., no structure, no PID = NE) ppm		5	5	20	35	35				
-				- 		110.0 8.0	Note: Fo	ormer Loess horizon.	-											
- - 10 - -	28 38 50 22	S3 17	10.0 12.0	SM			Very den in., sligh	se tan to light brown silty SAN tly bonded, no odor, wet	D with gravel (SM), mps 1 PID = 0.1	1.0 1 ppm	5	15	10	20	20	30				
- - 15 - - -	70 \5 <u>0/1</u> "r	S4 \	15.0 ∖15.6	SM			Similar to	o above	PID = 0.4	4 ppm	5	15	10	15	25	30				
- - 20			otorla			• • • •														
	ate	vv Time	Elap		D	epth (ft)	to:	O - Open End Rod		Overb	ourc	ten	<u>sun</u> (ft)	<u>an 118</u>)	ary (50.8	3			
		1110	Time	e (hr.) ^E	Casi	ng of Hol	water	T - Thin Wall Tube	Filter Sand	Rock	Со	red	(ft))						
9/1 09/1	.8/14 19/14	0715 0900	1	4	25 	30 50	18.0 26.8	S - Split Spoon Sample	Grout	Samp	les	No	<u> </u>	S H	14 A14	4-B	801	(0	W)
Ei-1	Se	e botton	n of log	for mo	ore W	ater Level	I Data	N - None Plastici	Bentonite Seal		iy adiur	m F	∕. ⊣-⊢	liah						
	te: Mo	: ximum	narticl	Tough	ncy. nness s dete	: L - Low	M - Mediur	n H - High Dry Str	ength: N - None L - Low I	M - Medi	ium	H-	Hig	h \	V - V	ery ⊦	ligh			
	ie. Ivid	No	ote: S	oil ide	ntific	cation ba	ased on vi	sual-manual methods of th	e USCS as practiced by	y Haley	/ &	Ald	Iric	h, lı	nc.					

	H A	IAL	EY& RIC	H				TEST BORING REPORT	F S	ile l hee	i ng No. et N	4 0.). F 105 2	IA1 8-01 of	4-B	61	(0)	N)
	ft)	swol .	9 9 9	e Î	loqu	ram	(F)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		San	d		F	ield ഗ	Tes	st 🗌
	Depth (Sampler B per 6 in	Sample I & Rec. (Sampl Depth (USCS Syr	Well Diag	Stratum Change Elev/Depth	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
	20 -	62 - <u>50/2</u> ",	\$5 7_7	20.5 _21.2	SM		•	Note: Drill action indicates cobble at 20.0 ft. Very dense tan silty SAND with gravel (SM), mps 0.8 in., bonded, no odor, wet PID = ND ppm		15	10	20	25	30				
-	25 -	70 50/1"/	\$6 \	25.0 _25.6 [SM			Very dense tan silty SAND with gravel (SM), mps 0.9 in., bonded, no odor, wet, trace pocket of clay PID = 0.2 ppm		15	10	20	25	30				
		62 50/2",	\$7 	27.0 27.7	SM		•••	Similar to above PID = 0.2 ppm										
1058-010-TBOW.GPJ 3 Oct 14	30 -	55 -50/3",	S8	29.0 29.7 r				Note: Spoon tip fell off in hole; no recovery. Spoon tip retrieved with 3-in. casing driven past its depth. Sample from 3-in. casing . PID = ND ppm -GLACIAL TILL-										
EXPLORATIONS AND DESIGNEXPLORATIONS(GIN 14	35 -	7 <u>5/4.5</u> '	\$9 	35.5 \35.9∫				Note: Drill action indicates cobble from 34.8 to 35.5 ft. Very dense tan to light brown silty SAND with gravel (SM), mps 0.6 in., bonded, no odor, wet PID = 0.1 ppm	5	10	10	20	25	30				
-0/-2 W FENCE.GUI G:(41050/010 -	40 -	62/5.5'	S10 ∑_5_∫	40.0 _40.5 [SM			Similar to above PID = 0.2 ppm										
NG-09 REV HA-LIB09-TAB.GLB HA-TB+CORE+WELL	45 -	65/4"	S11 	45.0 \	SM			Very dense tan to light brown silty SAND with gravel (SM), mps 0.8 in., bonded, no odor, wet PID = 0.2 ppm	5	10	10	15	25	35				
kA-IESI BUR		NOTE	: Soil in	lentifica	tion b	i:E:	on visual-	nanual methods of the USCS as practiced by Haley & Aldrich. Inc.	В	ori	ng	No	 _	IA1	 4-E	801	(0)	
έL								· · · · · · · · · · · · · · · · · · ·			-							

	F	HAL LD	EY8 RIC	H				TEST BORING REPORT	B F S	ile N hee	i ng No. et N	Nc 4 0.). H 105 3	IA1 8-01 of	. 4-B 10 3	01 ((01	N)
	_	SN		_	ō	E	l î		Gra	avel		Sano	ł		F	ield	Tes	t
	Depth (ft)	Sampler Blov per 6 in.	Sample No & Rec. (in	Sample Depth (ft)	USCS Symb	Well Diagra	Stratum Change Elev/Depth ((Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
	- 50 - - -	30 45 50/3"	S12 13	50.0 51.3	SM			Very dense tan to gray brown silty SAND with gravel (SM), mps 0.8 in., bonded, no odor, wet, trace pockets of clay PID = 0.2 ppm	5	10	10	15	25	35				
. Oct 14	- - 55 - - -	50 50/3"	S13 7	55.0 55.8	SM			-GLACIAL TILL- Very dense gray to olive brown silty SAND (SM), mps 0.5 in., bonded, no odor, wet, trace gravel, trace pockets of clay PID = ND ppm		5	10	15	30	35				
BORING-09 REV HA-LIB09-TAB.GLB HA-TB+CORE+WELL-07-2 W FENCE.GDT G:\41058/010 - EXPLORATIONS AND DESIGNIEXPLORATIONS/GINTA1058-010-TBOW.GPJ 3 OCI	- - 60 -	52 70/3"	<u>S14</u> <u>8</u>	60.0			57.2 60.8	DITION OF EXPLORATION 60.8 FT Note: Installed Groundwater Observation Well in completed borehole. <u>Vater Level Data continued:</u> <u>Data Bottom of Water</u> <u>Hole</u> 9/22/2014 50 ft 31.9 ft 9/23/2014 50 ft 32.9 ft 9/25/2014 50 ft 33.0 ft 9/26/2014 50 ft 33.2 ft										
H&A-TES		NOTE	: Soil ic	dentifica	tion ba	ased o	n visual-r	nanual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No	. F	IA1	.4-B	01	(0)	N)

H A	HAL LD	EY8 RICI	₹ H			Т	EST	BORING REPOR	T			Bo	ring	g۸	lo.	H	[A1	.4-]	BO	2
Pro Clie Cor	ject ent ntracto	99 SA r NE	TREM RACE W HA	IONT N PRO MPSH	STREE DPERTI IIRE BO	T, BRI ES DRING	GHTON	I, MA			Fil Sh Sta	e N leet art	o. No	41 . 1 23 \$ 24 \$	of Sept	3-01 2 tem	0 ber	201	4	
			0	Casing	Samp	oler	Barrel	Drilling Equipment	and Procedures		Dr	iller		Mai	rk I	D'A	mbr	osia	a	
Тур	е			NW	S			Rig Make & Model: CME	E75, Track		H8	sa f	Rep	-	A.	Fle	emiı	ıg		
Insic	de Diar	neter (i	in.)	3.0	1 3/	/8	5	Bit Type: Roller Bit, Cut Drill Mud: Polymer	tting Head		Ele	evat	tion		10 B(2.0 7B				
Harr	nmer V	Veight	(lb)	300	14	0	-	Casing: 3-in. driven 15 ft.			Lo	cati	on	S	ee F	Plan				
Han	nmer F	all (in.)	24	30)	-	PID Make & Model: The	rmo MiniRAE											
ft)	lows I.	No. in .)	e ft)	lodn	e e (ft)		VISU	AL-MANUAL IDENTIFICATION	N AND DESCRIPTION		Gra	avel	5	Sano	L L		F	ield	Tes	st
Depth (Sampler B per 6 in	Sample I & Rec. (Sampl Depth (USCS Syn	Stratum Change Elev/Depth		(Densit	y/consistency, color, GROUP N structure, odor, moisture, optic GEOLOGIC INTERPRE	AME, max. particle size ¹ onal descriptions ETATION)	J	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
-0-								-CONCRETE	-											
-	12 23 27 20	\$1 16	1.5 3.5	SM	0.9	Dense concr concr Note:	e tan silty ete fragm ete pad, a At 3.6 f	SAND (SM), mps 0.8 in., no s ents, trace wood, trace plastic b ppears disturbed t, cored through granite cobble	structure, no odor, mois bag material directly ber PID = to 3.8 ft.	st, trace heath ND ppm	5	5	5	45	25	15				
-	21	S2	4.0	SM		Simila	ar to abov	e												
- 5 -	18	8	5.0	SM		Dense	e tan to lio	tht brown silty SAND (SM) m	PID = 0.4 in no structure	ND ppm	5	5	5	45	20	20				
-	18 21 14	10	5.0 7.0	DIVI		odor,	moist, tra	ace roots, trace wood	PID =	ND ppm										
-	18 23 33 35	S4 13	7.0 9.0	SM		Very slight	dense dar ly bonded	k brown to tan silty SAND witi , no odor, moist, trace pockets	h gravel (SM), mps 0.6 of clay PID =	in., ND ppm	5	10	10	15	40	20				
- - 10 -	17 15 9 8	S5 12	9.0 11.0	SM		Simil	ar to abov	e except medium dense	PID =	ND ppm										
-	8 11 13 17	S6 16	11.0 13.0	SM		Simila	ar to abov	e	PID =	ND ppm										
-	25 35 50 57	S7 14	13.0 15.0	SM	89.0 13.0	Very bonde	dense bro ed, no odo	wn silty SAND with gravel (SN r, moist to wet, 10% pockets c	M), mps 0.5 in., slightly of clay PID =	/ ND ppm	5	10	5	15	40	25				
- 15 -	56 76 81 74	S8 20	15.0 17.0	SM		Very bonde	dense oliv ed, no odo	e brown to tan silty SAND wit or, wet, 10% pockets of clay -GLACIAL TIL	th gravel (SM), mps 0.8 PID = L-	in., ND ppm	10	10	10	15	25	30				
-	<u>100/4</u> ",	∑ ^{S9} 3	17.0 17.3	SM		Simila	ar to abov	e	PID =	ND ppm										
- - 20 -	33 40	S10 19	19.0 21.0	SM		Very	dense bro	wn silty SAND (SM), mps 0.5	in., bonded, no odor, v PID =	wet ND ppm	5	5	10	15	35	30				
		W	ater Le	evel Da	ta Denti	h (ft) #	. .	Sample ID	Well Diagram	-			Sum	ma	ry					
D	ate	Time	Time	(hr.) ^E	Casing	Bottom of Hole	yater	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Split Spoon Sample	Screen Filter Sand (R.f.) Grout Concrete	Over Rock Sam	burd Co bles	den red	(ft) (ft)	S1	3 17 H	35.0 A1) 4- E	302	2	
Field	d Tests	:		Dilatar	ncy: R - F	Rapid S	6 - Slow 1	N - None Plastici	Bentonite Sea	ow M-M	ediu	m_H	H-H	ligh h	/_\//	arv F	liah			
[†] No	te: Ma	ximum	particle	size is	determi	ned by	direct ob	servation within the limitation	ns of sampler size.			<u>مام</u>	ng Iric'	<u> v</u>		лу Г	igit			_
		NC	<u>ле: S</u>		nuncati	UII DAS	eu on vi	sual-manual methods of th	e usus as practiced	i by Hale	уőч	AIC	ITICI	u, Ir	IC.					

	H A	IAL LD	EY& RIC	H			TEST BORING REPORT	F S	Bori ile N Shee	ing No. et N	Nc 4 0.). 105 2	H 8-01 of	IA1 10 2	4-B	02	
F		SWG	e ĉ		lod	(ff)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		San	d		F	ield	Tes	st
	S Depth (ft	Sampler Blo per 6 in.	Sample N & Rec. (ir	Sample Depth (ft	USCS Sym	Stratum Change Elev/Depth	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
-	20 -	50 63 36 100/5"	S11 11	21.0 21.9	SM		Very dense gray to olive brown silty SAND with gravel (SM), mps 0.7 in., well bonded, no odor, wet, trace pockets of clay PID = ND ppm	5	10	10	10	40	25				
-		45 1 <u>00/3</u> "	\$12 5	23.0 23.7	SM		Similar to above PID = 0.5 ppm -GLACIAL TILL-										
-	25 -	84 100/5"	\$13 8	25.0 25.9	SM		Similar to above PID = ND ppm										
		49 54 51 64	\$14 20	27.0 29.0	SM		Very dense tan to olive brown silty SAND with gravel (SM), mps 1.0 in., well bonded, no odor, wet, 10% pockets of clay PID = 0.2 ppm	5	10	10	10	30	35				
30W.GPJ 3 UC	30 -	55 100/4"	\$15 	29.0 29.8	SM		Similar to above PID = 0.1 ppm										
GINT\41058-010-1E		32 26 44 70	\$16 20	31.0 33.0	SM		Similar to above $PID = 0.4 ppm$										
VEXPLORATIONS	35 -	34 45 51 60	\$17 15	33.0 35.0	SM	67.0	Very dense tan silty SAND with gravel (SM), mps 0.8 in., well bonded, no odor, wet, 25% pockets of lean clay PID = 0.3 ppm	5	10	10	15	25	35				
T BORING-09 REV HA-LIB09-TAB.GLB HA-TB+CORE+WELL-07/2 W FENCE.GDI G:/410580010 - EXPLORATIONS AND DESIG																	
H&A-IESI		NOTE	: Soil id	dentifica	tion ba	ased on v	isual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	В	ori	ng	No		H	IA1	4-B	02	

H A	HAL	EY& RICI	₹ H			Т	EST	BORING REPOR	т				Boi	ring	g N	lo.	Н	[A1	.4-]	B 0	3
Pro Clie Cor	ject ent ntracto	99 SA r NE	TREM RACE W HA	IONT IN PRO MPSH	STREE DPERTI IIRE BO	T, BRI IES ORINC	IGHTON 5, INC.	I, MA				Fil Sh Sta	e No leet art	o. No	41 . 1 24 \$	058 of Sept	-01 2 emt	0 ber	201	4	
			(Casing	Sam	pler	Barrel	Drilling Equipment	and Procedu	res		Dr	iller		Mai	rk D)'A	mbr	osi	a	
Тур	е			NW	S			Rig Make & Model: ATV	, Track			H8	ka f	Rep	•	A.	Fle	emir	ıg		
Insic	de Dian	neter (i	n.)	3.0	1 3	/8		Drill Mud: Polymer	ting Head			Ele Da	evat atum	ion 1		102 BC	2.0 CB				
Ham	nmer W	/eight ((lb)	300	14	0	-	Casing: NW driven 15 ft. Hoist/Hammer: Cat-Head	Safety Ham	mer		Lo	cati	on	Se	ee P	lan				
Han	nmer F	all (in.))	24	30)	-	PID Make & Model: Then	mo MiniRAE												
(#	Blows n.	(in).	ele (ff)	lodm'	th (ft)		VISU	IAL-MANUAL IDENTIFICATION	AND DESCRI	PTION		Gra	avel	e	Sanc E	ł	-	F	ield %	Tes	it
Depth	Sampler I per 6	Sample & Rec.	Samp Depth	uscs s)	Stratu Chan Elev/Dep		(Densit	y/consistency, color, GROUP N/ structure, odor, moisture, optio GEOLOGIC INTERPRE	AME, max. parti nal descriptions TATION)	icle size [†] , s		% Coars	% Fine	% Coars	% Mediu	% Fine	% Fines	Dilatancy	Toughne	Plasticity	Strength
- 0 -					101.3			-CONCRETE-											_		
_	5 8	S1 10	1.0 3.0	SP- SM	0.8	Note: S1: M mps (Plastic n Medium d 0.7 in., no	natting under concrete, concrete ense brown to tan poorly graded o structure, no odor, dry, appea	e contains rebar d SAND with s rs disturbed	r. iilt (SP-Sl	M),	5	5	5	60	15	10				
	9			SM	2.2	N.		-FILL-		PID = 1	ND ppm	5	5	10	35	25	20	-+	-+		
-	11 12 14	S2 12	3.0 5.0	SM		S1, B no od S2: S	Bottom: M lor, moist, Similar to	Iedium dense tan silty SAND (S , trace roots, trace brick above	SM), mps 0.5 i	n., no str	ucture,										
_ ا	14				97.0					PID = 1	ND ppm										
- 5 -	18 13 14 10	S3 13	5.0 7.0	SM	5.0	Media struct	um dense ture, no oc	tan to olive brown silty SAND lor, moist, trace roots	(SM), mps 0.7	in., no $PID = 1$	ND ppm	5	5	10	30	25	25				
-	25 25 19 17	S4 18	7.0 9.0	SM		Simil	ar to abov	e except dense		PID = 1	ND ppm										
- - 10 -	18 16 14 16	\$5 12	9.0 11.0	SM		Simil	ar to abov	-PROBABLE GLACIAL	FILL FILL-	PID = 1	ND ppm										
-	16 19 21 22	S6 11	11.0 13.0	SM		Simila	ar to abov	e		PID = 1	ND ppm										
-	14 16 17 16	S7 17	13.0 15.0	SM	87.0	Dense bonde	e tan to ol ed, no odo	ive brown silty SAND with gra or, wet, 15% pockets of clay, aq	vel (SM), mps opears disturbed	0.7 in., y d PID = 1	well ND ppm	5	10	10	20	25	30				
- 15 -	35 100/4"		15.0 15.8	SM	15.0	Simil: Note:	ar to abov Drill act	e, except very dense, not distur	bed ers from 15.8 t	PID = 1to 19.0 ft	ND ppm										
_								-GLACIAL TIL	L-												
- - 20 -	32 50/5"	S9 8	19.0 19.9	SM		Simil	ar to abov	e, except very dense		PID = 1	ND ppm										
		Wa	ater Le	evel Da	ta Denti	h (ft) t	0.	Sample ID		g ram r Pipe			5	Sum	mai	ry					
D	ate	Time	Time	(hr.) ^E	Bottom Casing	Bottom of Hole	Water	U - Open End Rod T - Thin Wall Tube U - Undisturbed Sample	ि Scree Scree ि Filter	en Sand ngs	Overt Rock	Co	ien red	(ft) (ft)	S1	3 6	54.7 	,			
								S - Split Spoon Sample	Grou Grou Conc Bento	it prete pnite Sea	Bori	ng	Nc).	51	H	A1	4-F	303	6	
Field	d Tests	•		Dilata Tough	ncy:R-F	Rapid S	S - Slow N M - Mediun	N - None Plastici n H - High Dry Stre	ty: N - Nonplas ength: N - None	stic L-Lo e L-Low	w M-Med	ediu lium	m H-	I - H Hig	igh h V	′ - Ve	ery H	ligh			
	te: Ma	ximum No	particle te: S	e size is oil ide	determi ntificati	ined by on bas	direct ob sed on vi	eservation within the limitation sual-manual methods of the	<u>is of sampler set usCS as pr</u>	size. 'acticed	by Hale	y &	Ald	ricl	n, In	IC.					

F	ΤΔΤ	EY8					E	Bori	ing	No).	E	IA1	4-B	03	
Ā	LD	RIC	Ĥ			TEST BORING REPORT	F S	ile I Shee	No. et N	4 lo.	105 2	8-01 of	10 2			
f)	SMO .	₽́ci	a F	lod	(tt)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		San	d		F	ield	Tes	st
Depth (f	Sampler Bl per 6 in	Sample N & Rec. (i	Sample Depth (f	USCS Syn	Stratum Change Elev/Depth	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
- 20 -						Note: Drill action indicates boulders 19.9 to 20.9 ft.										
-	49 100/4"	\$10 7	21.0 21.8	SM		Very dense tan to olive brown silty SAND with gravel (SM), mps 1.0 in., well bonded, no odor, wet, 15% pockets of clay	5	10	10	20	25	30				
						Note: Drill action indicates cobble at 21.8 ft. $PID = 0.4$ ppm										
-	68 63 73 97	\$11 12	23.0 25.0	SM		Very dense tan to olive brown silty SAND with gravel (SM), mps 0.8 in., well bonded, no odor, wet PID = 0.1 ppm	5	10	10	20	20	35				
- 25 -	37	<u>\$12</u>	25.0	SM		Similar to above										
-	100/5"	8	25.9			PID = 0.2 ppm										
-	17 33 62 63	\$13 16	27.0 29.0	-		Very dense tan to olive brown silty SAND with gravel (SM), mps 0.6 in., well bonded, no odor, wet, trace pockets of silt, trace pockets of clay PID = ND ppm										
-	48 43	S14 17	29.0 31.0	-		Similar to above PID = 0.3 ppm										
- 30 -	40 55					-GLACIAL TILL-										
-	16 28 39 73	\$15 19	31.0 33.0	SM		Very dense tan to olive brown silty SAND with gravel (SM), mps 0.5 in., well bonded, no odor, wet, trace pockets of silt, 10% clay lenses PID = 1.1 ppm	5	10	10	20	20	35				
-	22	S16	33.0	CL		Hard gray lean CLAY with sand (CL), mps 0.4 in., well bonded, no odor,		5		5	5	85				
-	27 38 100/2"	13	34.7		67.3	PID = 1.7 ppm										
					34.7	BOTTOM OF EXPLORATION 34.7 FT										
												F	 	4-P	103	<u> </u>
	NOTE	: Soil io	dentifica	ition ba	ased on vi	sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	B	ori	ng	NO	•	1		D		

H A	IAL LD	EY& RICI	æ H			٦	EST	BORING REPOR	RT			Boi	rin	g١	lo.	H	[A1	.4-]	BO	4
Pro Clie Cor	ject ent ntracto	99 SA r NE	TREN RACE W HA	IONT En pro Ampsh	STREE OPERTI HIRE BO	F, BR ES DRINC	IGHTON G, INC.	I, MA			File Sh Sta	e No neet art	o. No	41 22 3	of Sept	3-01 2 teml	0 ber	201	4	
				Casing	Sam	oler	Barrel	Drilling Equipment	and Procedures		Dr	nisn iller		Ma	rk E)'A'	mbr	osia	+ a	
Тур	е			NW	S			Rig Make & Model: ATV	, Track		Н8	sa f	Rep).	A.	Fle	emii	ıg		
Insic	le Diar	neter (i	in.)	3.0	1 3/	/8		Bit Type: Roller Bit, Cut Drill Mud: None	tting Head		Ele	evat	tion		92 DC	.0				
Ham	nmer V	Veight	(lb)	300	14	0	-	Casing: 3 in. driven 25 ft.			Lo	cati	on	S	ee F	л <u>ы</u> lan				
Han	nmer F	all (in.)	24	30)	-	PID Make & Model: The	I Safety Hammer											
f)	SMO .	ġ.		lodi	(E)		VISU	AL-MANUAL IDENTIFICATION	AND DESCRIPTION		Gra	avel		Sano	b		F	ield	Tes	st
Depth (f	Sampler Bl per 6 in	Sample N & Rec. (i	Sample Depth (f	USCS Sym	Stratum Change Elev/Depth		(Density	//consistency, color, GROUP N structure, odor, moisture, optic GEOLOGIC INTERPRE	AME, max. particle size [†] , onal descriptions TATION)		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
- 0 -					01.0			-CONCRETE	-											
-					0.8						-									
-	19 20 28 20	\$1 12	1.5 3.5	SM		Dense trace	e gray to t concrete f	an silty SAND (SM), mps 0.4 ragments	in., no structure, no odor $PID = N$	r, dry, ID ppm		10	10	35	25	20				
	19	S2	3.5	-		Simil	ar to abov	e, except no concrete												
-	20 18	8	5.5					EILI	PID = N	D ppm										
- 5 -	20							-FILL-												
F	17	S3	5.5	SP-	86.0	Dens	e tan to lig	the brown poorly graded SANE) with silt and gravel (SP	-SM),	5	10	5	45	25	10	\square			
	30	10	7.5	SM	6.0		0.0 III., IIO	structure, no odor, dry	PID = 0	0.1 ppm/	5	10	10	10	35	30				
-	14					S3, E	Bottom: V	ery dense tan silty SAND with	gravel (SM), mps 1.0 in	., ained										
-	17 19	S4 13	7.5 9.5	SM		sand,	trace poc	kets of clay	of any fine to meaning	amed										
	20 18	-	2.5			S4: S	Similar to	above except dense	PID = N	D ppm										
-	17	\$5	0.5	SM		Simil	ar to abov	e excent verv dense												
- 10 -	18	9	9.5 11.5	5111			ai to abov	e except very dense	PID = N	D ppm										
-	40																			
	10	S 6	11.5	SM		Dens	e tan to oli	ive brown silty SAND with gra	wel (SM), mps 0.8 in., n	0	5	10	10	15	30	30				
-	11 23	10	13.5			struct grain	ture, no oc ed sand	lor, wet, trace pockets of clay,	10% pockets of medium	to fine										
-	26								PID = N	D ppm										
-	14	S7	13.5	SM		Simil	ar to abov	e, except medium dense	PID = N	D ppm										
	10	15	15.5					-PROBABLE GLACIAL	TILL FILL-	D ppm										
- 15 -	, ,			GM		C::1		d' d												
-	11 12	88 8	15.5 17.5	SM		Simi	ar to abov	e, except meanum dense	PID = N	D ppm										
_	15 12																			
	9	S9	17.5	SM		Medi	um dense	gray to tan silty SAND with gr	avel (SM), mps 0.9 in., s	slightly	5	10	10	30	15	30				
-	7	15	19.5			bonde	ed, no odo	r, wet, 15% pockets of clay	PID = N	D nnm										
-	ĺ ĺ1								IID = N	то bhш										
- 20 -	9	S10	19.5	SM		Simil	ar to abov	e												
		W	ater Le	evel Da	ita	ר /ft\ י	0.	Sample ID				S	Sum	nma	ry					
D	ate	Time	Time)sea e (hr.) - ^E	Bottom	Bottom	U. Water	O - Open End Rod T - Thin Wall Tube	Screen	Overt	JURC	den	(ft))	2	25.0	1			
			+	<u>`</u> ′of	Casing	ot Hole		U - Undisturbed Sample	िसंग्री Filter Sand जि.संग्री Cuttings	Samr	uu sesic	uea	(π)	, 	3					
								S - Split Spoon Sample	Grout Grout	Bori	na	No	,		H	A1	4- F	304	ŀ	
Elat	d Test			Dilata	ncv: P. E	Ranid 1	S - Slow N	l None Plastic i	Bentonite Seal		ediu	m F	∕• + - ⊢	liah						
		vinum	nartial	Tough	ness: L	Low I	M - Mediun	<u>h H - High</u> Servation within the limitation	ength: N - None L - Low	M - Med	lium	H-	Hig		/ - Ve	<u>ery</u> ⊢	<u>ligh</u>			
NU	.c. IVId	No	particity of the second	soil ide	ntificati	on bas	sed on vi	sual-manual methods of th	e USCS as practiced	by Hale	y &	Ald	ric	h, Ir	nc.					

I	TAT	EY8					B	Sori	ing	No).	H	IA1	4-B	04	
Ā	ALD	RIC	Ĥ			TEST BORING REPORT	F	ile N	No. ⊐tN	4	105	8-01	0,			
	SM	<u>.</u>		0	(J		Gra	avel		Sanc	2		F	ield	Tes	st
Depth (ft	Sampler Blo per 6 in.	Sample N & Rec. (in	Sample Depth (ft	USCS Symb	Stratum Change Elev/Depth	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 20	6 7 8 11	$\begin{array}{c} 3 \\ 511 \\ 10 \end{array}$	20.0 20.0 22.0	SM		Similar to above $PID = ND ppm$ PID = ND ppm $PID = ND ppm$										
-	10	612	22.0	CI	70.0	-PROBABLE GLACIAL TILL FILL-		5	5	5	5	80	N	м	м	M
-	19 16 29 21	8	22.0 24.0	CL	22.0	-GLACIAL TILL-			5		5	80	IN	IVI	IVI	IVI
- 25	22 18	S13	24.0 25.0	CL	67.0	Similar to above PID = ND ppm										
	NOTE	: Soil ic	lentifica	tion ba	23.0	isual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	B		ng			H	IA1	4-B	04	
	NULE	. 3011 IC	ientifiCa	uon da	ased on Vi	isual-manual methous of the USCS as practiced by Haley & Aldrich, INC.		511			•					

H A	IAL LD	EY& RIC	Ĥ				TEST	BORING REPOR	RT				Во	rin	g١	lo.	H	[A]	[4-]	BO	5
Proj Clie Cor	ject ent ntracto	99 SA or NE	TREN RACI EW H.	MONT EN PRO AMPSH	STREE OPERTI HRE BO	T, BI IES ORIN	RIGHTON IG, INC.	J, MA				Fil Sh Sta	e N leet art	o. No	41 - 1 26 \$	1058 of Sept	3-01 2 tem	.0 ber	201	4	
				Casing	Sam	pler	Barrel	Drilling Equipment	and P	rocedures		Fir Dr	iller		20 s Ma	rk I	D'A	mbi	zosi;	+ a	
Туре	е			HW	S			Rig Make & Model: ATV	, Tracl	κ.		Н	sa f	Rep		A.	Fle	emi	ng		
Insid	le Diar	neter (in.)	4.0	1 3	/8		Drill Mud: Polymer	tting H	ead		El Da	eva atun	tion า		92 B(.0 `B				
Ham	nmer V	Veight	(lb)	300	14	0	-	Casing: HW Driven 9 ft. Hoist/Hammer: Cat-Head	1 Wind	h Safety Hamn	ner	Lo	cati	on	S	ee I	Plan	l			
Harr	nmer F	all (in.)	30	30)	-	PID Make & Model: The	rmo Mi	iniRAE											
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	USCS Symbol	Stratum Change Elev/Depth (ft)		VISL (Densit	JAL-MANUAL IDENTIFICATION y/consistency, color, GROUP N structure, odor, moisture, optic GEOLOGIC INTERPRE	AME, m AME, m onal des	DESCRIPTION ax. particle size [†] , criptions N)		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness B	Plasticity 3	Strength T
- 0 -					01.2			-CONCRETE	-												
-					0.8	Not	e: Plastic r	natting under concrete.													
-	10 14 11	S1 16	1.5 3.0	SM		Me odo	dium dense r, moist	olive brown silty SAND (SM),	, mps 0.	4 in., no structure PID = N	e, no D ppm	5	5	5	15	50	20				
-	13 14 16 22	S2 13	3.0 5.0	SM		Sim	iilar to abov	re -TILL FILL-		PID = N	D ppm										
- 5 -	19 19 17 19	S3 12	5.0 7.0	SM	87.0 5.0	Der trac	nse tan to ol e roots, trad	ive brown silty SAND (SM), n ce pockets of clay	o struct	ure, no odor, moi PID = N	st, D ppm	5	5	5	15	45	25				
_	20 22 15 17	S4 14	7.0 9.0	SM		Sim	ilar to abov	e		PID = N	D ppm										
- 10 -	17 59 \ <u>\50/0"</u> 7	S5 8	9.0 10.0	SM		Ver stru	y dense tan cture, no oo	to olive brown silty SAND wit dor, moist	th grave	l (SM), mps 0.8 i PID = N	n., no D ppm	5	10	10	15	40	25				
-	14 12 13 11	S6 12	11.0 13.0	SM		Sim	ilar to abov	re, except medium dense	TILL F	PID = N	D ppm										
-	12 15 15 14	S7 1	13.0 15.0	SM		Sim	ilar to abov	re		PID = N	D ppm										
- 15 - -	10 15 12 12	S8 6	15.0 17.0	SM		Me slig	dium dense htly bonded	olive brown silty SAND with § I, no odor, moist, trace pockets	gravel (S of clay	SM), mps 1.0 in., , trace pockets of PID = 0	silt .8 ppm	5	10	10	10	40	30				
_	10 8 5 5	S9 2	17.0 19.0	SM		Sim	ilar to abov	e		PID = N	D ppm										
- 20 -	5 8	\$10 20	19.0 21.0	SP		Me stru	dium dense cture, no oo	tan to brown poorly graded SA dor, wet, sample appears distur	ND (SF	P), mps 0.3 in., no)		5	15	25	50	5				
		W	ater L	evel Da	ta Depti	 h (ft)	to:	Sample ID		/ell Diagram Riser Pipe	0		- tor	Sum	nma	ry _					
	ate	Time	Time	e (hr.) E	Bottom Casing	Bottor of Hol	water	T - Thin Wall Tube		Screen Filter Sand Cuttings	Rock Samp		red	(ft) (ft)	S1	12	23.(J			
				Dilata		Donisi		S - Split Spoon Sample		Grout Concrete Bentonite Seal	Bori	ng	No).	liah	H	A1	4-]	305	5	
[†] Not	te: Ma	s: iximum No	partic	Tough le size is Soil ide	ness: L determi ntificati	- Low ined k	M - Mediun M - Mediun M - Mediun M - Mediun M - Mediun M - Mediun M - Mediun	n H - High Dry Str pservation within the limitation sual-manual methods of th	ength: ns of same USC	Nonplastic L - Low N - None L - Low Ampler size. S as practiced I	M - Mec	dium	H.	Hig	h. Ir	/ - Ve	ery H	ligh			

F	ΤΔΤ	FY8					B	Sori	ing	No).	H	IA1	4-B	05	
1	ALD	RIC	Ĥ			TEST BORING REPORT	F	ile N	NO.	4	105	8-01	0			
	SN	<u></u>		ō	lî (Gra	avel		o. Sanc	2		 F	ield	Tes	st
Depth (ft)	ampler Blov per 6 in.	Sample No & Rec. (in	Sample Depth (ft)	JSCS Symb	Stratum Change Elev/Depth ((Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	6 Coarse	6 Fine	6 Coarse	6 Medium	6 Fine	6 Fines	Dilatancy	oughness	Plasticity	Strength
- 20 -	0 11 11					-PROBABLE GLACIAL TILL FILL-	°`	01	0	<u>0</u> `	0`	0`				
-	9 9 10 22	S11 18	21.0 23.0	SP ML	70.0 22.0	PID = 1.9 ppm S11, Bottom: Medium dense light tan sandy SILT (ML), mps 0.5 in., well	5	5	5	10	15	60				
-	13 20 56	\$12 20	23.0 25.0	ML		S12: Similar to above, except very dense $PID = 0.8 \text{ ppm}$										
- 25 -	29				67.0 25.0	BOTTOM OF EXPLORATION 25.0 FT										
							В			Νο		H		4-B	05	
	NOTE	Soil ic	lentifica	tion ba	ased on vi	isual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	B	ori	ng	NO.	•			ц-т		

H A		EY& RICI	z H			TEST	BORING REPOR	RT			Bo	rin	g١	NO.	H	[A]	4-	BO	6
Proj Clie Cor	ject ent ntracto	99 SA r NE	TREN RACE W H4	IONT EN PRO AMPSE	STREE OPERTI IIRE BO	T, BRIGHTC ES DRING, INC	N, MA			Fil Sh Sta	e No neet art	o. No	4 1 19	1058 of Sept	3-01 1 tem	.0 ber	20 1	14	
				Casing	Samp	oler Barrel	Drilling Equipmen	and Procedures		Fir Dr	nish iller		Toi	n Se	chae	efer	201	.4	
Туре	е			HW	S		Rig Make & Model: ATV	, Track		н	sa f	Rep).	A.	Fle	emi	ng		
Insid	le Diar	neter (i	n.)	4.0	1 3/	/8	Drill Mud: None				evat	tion		73 B(.0 TB				
Ham	nmer V	/eight ((lb)	300	14	0 -	Casing: HW Driven 16 ft			Lo	cati	on	S	ee I	Plan				
Harr	nmer F	all (in.))	24	30) -	PID Make & Model: The	rmo MiniRAE	ner										
ft)	lows 1.	No.)	e ft)	nbol	n e h (ft)	VI	UAL-MANUAL IDENTIFICATIO	N AND DESCRIPTION		Gra	avel	5	San	d		F	ield	Те	st
Depth (Sampler B per 6 ir	Sample & Rec. (Sampl Depth (USCS Syr	Stratur Chang Elev/Deptl	(Den:	ity/consistency, color, GROUP N structure, odor, moisture, opti GEOLOGIC INTERPRI	IAME, max. particle size [†] , onal descriptions ETATION)		% Coarse	% Fine	% Coarse	% Mediun	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
- 0 -							-CONCRETE	-											
-	3 6 15	S1 8	1.0 2.5	ML	72.0 1.0	Very stiff oli odor, moist,	we brown lean CLAY with sand trace pockets of silt, trace concre	(CL), mps 0.4 in., bondec ete PID = N	l, no D ppm			10	10	20	60	S	L	M	M
	<u>50/1</u> ",			-		-AI	BLATION TILL/ GLACIOLAC	USTRINE DEPOSITS-											
-	6 7 9 11	S2 11	3.0 5.0	CL		Stiff olive bro pockets of sil	own lean CLAY (CL), mps 0.6 i t	n., slightly bonded, moist PID = N	t, 10% D ppm						100	S	L	М	M
- 5 -	11 18 22	S3 16	5.0 7.0	ML	68.0 5.0	Dense olive t moist, 10% p	rown sandy SILT (ML), mps 0. ockets of silt	5 in., slightly bonded, no PID = N	odor, D ppm					30	70				
-							-GLACIOLACUSTRINE	DEPOSITS-											
- 10 -	9	S4	10.0	ML/	$\begin{array}{c} 63.0\\ 10.0 \end{array}$	Dense to hard	gray sandy SILT (ML) to sand	/ lean CLAY (CL), mps 0).3 in.,		10		5	15	70	S	L	M	M
-	15 22 20	18	12.0	CL		bonded, no o	dor, moist, 15% pockets of silt	PID = N	D ppm										
-							-GLACIAL TII	L-											
- 15 -	22 22	S5 11	15.0 16.1	ML	56.0	Similar to ab	ove, except very dense, trace cla	y, with gravel $PID = N$	D ppm	10	5		5	20	60				
	<u>ر ۷۱/۷ م</u>				16.1		BOTTOM OF EXPLORAT	TION 16.1 FT											
			aterl		ta		Samala ID	Well Diagram											
D	ate	Time	Elap	bsed (hr.) ^E	Depth Bottom Casing	h (ft) to: ^{Bottom} Wate	O - Open End Rod r T - Thin Wall Tube U - Undisturbed Sample	Riser Pipe Screen	Overl Rock		den ored	(ft) (ft)))	<u>u y</u>	16.1 				
				Dilete		Danid & Class	S - Split Spoon Sample	Grout Grout Concrete Bentonite Seal	Bori	ng	Nc).	S	H	A1	4-]	300	5	
[†] Not	te: Ma	ximum No	particle	Tough e size is oil ide	ness: L determi ntificatio	Low M - Medi ned by direct on based on	um H - High Dry Str observation within the limitation visual-manual methods of the	ength: N - None L - Low ns of sampler size.	M - Mec	lium	 H -	Hig		/ - Ve	ery H	<u>ligh</u>			

HALEY& ALDRICH							TEST BORING REPORT						Boring No. HA14-B07 (OW)							7		
Project99 TREMONT STREET, BRIClientSARACEN PROPERTIESContractorNEW HAMPSHIRE BORING							IGHTON, MA G, INC.						File No. 41058-010 Sheet No. 1 of 2 Start 19 September 2014 Finish 19 September 2014									
Casing Sampler							Barrel Drilling Equipment and Procedures						Driller Tom Schaefer									
Type HW S Inside Diameter (in.) 4.0 1 3/8 Hammer Weight (lb) 300 140						S 1 3/8 140		Rig Make & Model: ATV, Track Bit Type: Roller Bit Drill Mud: None Casing: HW Driven 25 ft.							H&A Rep.A. FlemingElevation72.0DatumBCBLocationSee Plan							
Han	nmer F	all (in.)	24		30	-	Hoist/Hammer: Cat-Head PID Make & Model: The	1 Safety Hammer rmo MiniRAE													
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	USCS Symbol	Well Diagram	Stratum Change Elev/Depth (ft)	V (Der	ISUAL-MANUAL IDENTIFICAT nsity/consistency, color, GROUI structure, odor, moisture, o GEOLOGIC INTERF	ION AND DESCRIPTION P NAME, max. particle size [†] ptional descriptions PRETATION)		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness a	Plasticity sal	Strength 7		
- 0 -						71.5		-ASPHAL	T-													
-	14 11 15 21	S1 17	1.0 3.0	SP- SM	5 00 <u>0</u>		Medium and grave orange st	dense brown to orange brown p el (SP-SM), mps 0.8 in., no str aining	boorly graded SAND with s ucture, no odor, moist, tra PID = NE	silt ce) ppm	5	10	5	60	10	10						
-	12 22 50/3"	S2 10	3.0 4.3	-		67.0		-FILL-	PID = NE) ppm												
- 5 -	40 48 45 58	S3 16	5.0 7.0	SP- SM		5.0	5.0 Very dense tan to light brown poorly graded SAND with silt (SP-SM), mps 0.5 in., slightly bonded, no odor, moist, trace concrete PID = ND ppm 5 10 65 10 10															
- - - 10 -					<u>- 9</u>	62.0		-GLACIAL	TILL-					_	00	10						
-	15 14 16 17	S4 14	10.0 12.0	SM		10.0	Medium dense tan poorly graded SAND (SP), mps 0.2 in., no structure, no odor, moist PID = ND ppm -GLACIOLACUSTRINE DEPOSITS-								10							
- - 15 - - -	14 20 20 22	S5 18	15.0 17.0	SP- SM			Dense tar structure,	n poorly graded SAND with sil no odor, moist, pockets of pu	t (SP-SM), mps 0.3 in., no re silt PID = NE)) ppm				20	70	10						
- 20 -						• • • • •																
		W	ater L	evel Da	ata ח	epth (ft)	to:	Sample ID	Well Diagram	0		8	Sum	nma	ry				_			
D 9/22	ate /20154	Time 0730		psed e (hr.) 0+	Bottor Casii	n Bottor ng of Hol 25	n Water 20.34	U - Open End Rod T - Thin Wall Tube U - Undisturbed Sample	Screen Filter Sand Screen	Overb Rock Samp	urc Co les	ien red	(ft) (ft)	S	2 6	25.0)					
9/23	3/2014 Se	0715 e botton	n of lo	75 g for me	 ore W	25 ater Level	20.72 Data		Concrete	Borir	ng	No).	H	414	4- B	07	(0	W)		
Fiel	d Tests	:	101 10	Dilata	ncy:	R - Rapid	S - Slow I	N - None Plastic	ity: N - Nonplastic L - Low	M - Me M - Medi	diur	m H	l - H	ligh h M	/ _ \/e	env ⊢	liah					
⁺No	[†] Note: Maximum particle size is determined by direct observation within the limitations of sampler size. Note: Soil identification based on visual-manual methods of the USCS as practiced by Halev & Aldrich. Inc.																					

HALEY&						Boring No. HA14-B07 (OW)											
Ā	LD	RIC	H				IEST BORING REPORT	F S	ile l Shee	No. et N	4 lo.	105 2	8-01 of	10 2			
ft)	lows I.	No.	ft)	lodn	ram	e (ff)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		San	b	-	F	ield ഗ	Tes	st
Depth (Sampler B per 6 in	Sample I & Rec. (Sampl Depth (USCS Syr	Well Diag	Stratun Change Elev/Deptt	(Density/consistency, color, GROUP NAME, max. particle size [†] , structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughnes	Plasticity	Strength
- 20 -	22	S6	20.0	SM		52.0 20.0	Dense tan silty SAND (SM), mps 0.5 in., moderately bonded, no odor,		5	5	20	50	20				
-	17 20	14	22.0				PID = 0.1 ppm										
-						47.0	-GLACIAL TILL-										
- 25 -					<u>•</u> .•	25.0	BOTTOM OF EXPLORATION 25.0 FT										
							Note: Installed Groundwater Observation Well in completed borehole.										
							Water Evel Data continued: Date Bottom of Water Hole 9/24/2014 25 ft 20.8 ft 9/25/2014 25 ft 20.9 ft 9/26/2014 25 ft 9/26/2014 25 ft 20.9 ft 9/26/2014 25 ft 20.9 ft										
	NOTE: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. Boring No. HA14-B07 (OW)								W)								

HALEY& ALDRICH	GROUNDWA INST	TER (obser Tion R	VATION WELL EPORT Well No. HA14-B01 (OW) Boring No. HA14-B01 (OW)
Project99 TREMONTLocationBRIGHTON, MClientSARACEN PROContractorNEW HAMPDrillerTom SchaeferInitial Water Level (depth b	STREET A PERTIES SHIRE BORING, INC gs) 18.0	ft		Well Diagram File No. 41058-010 Image: Riser Pipe Date Installed 18 Sep 2014 Image: Screen H&A Rep. A. Fleming Image: Filter Sand Location See Plan Image: Cuttings Grout Image: Grout Ground El. 118.0 Image: Determine Date Installed 18 Sep 2014 Image: Grout Ground El. 118.0 Image: Determine Date Installed 18 Sep 2014
SOIL/ROCK		DEPTH (ft.)	ELEVATION (ft.)	WELL CONSTRUCTION DETAILS
-0 FILL		0.0	118.0	Type of protective coverRoadway BoxHeight of Roadway Box above ground surface0.2 ftDepth of top of riser below ground surface3.0 ft
-5 5. 5. 8. 8.	o 0			Type of protective casing Roadway Box Length 0.8 ft Inside diameter 6.0 in.
		21.0	97.0	Depth of bottom of Roadway Box 0.6 ft Type of riser pipe Schedule 40 PVC Inside diameter of riser pipe 2.0 in. Depth of bottom of riser pipe 30.0 ft
		<u>27.0</u> <u>30.0</u>	91.0 88.0	Type of SealsTop of Seal (ft)Thickness (ft)Concrete0.00.5Bentonite21.06.0
GLACIAL TILL				Bentonite53.07.0Diameter of borehole4.0 in.Depth to top of well screen30.0 ft
				Type of screenMachine slotted Sch 40 PVCScreen gauge or size of openings0.010 in.Diameter of screen2.0 in.
-55 -55		50.0	68.0 65.0	Type of Backfill around Screen Filter Sand Depth to bottom of well screen 50.0 ft Bottom of silt trap
60 60 60.	8	60.0	58.0	— Depth of bottom of borehole <u>60.8 ft</u>

HALEY& ALDRICH	GROUNDWA INST/	TER (OBSEF TION R	RVATION WELLWell No.HA14-B07 (OW)REPORTBoring No.HA14-B07 (OW)
Project 99 TREMONT S' Location BRIGHTON, MA Client SARACEN PROP Contractor NEW HAMPS Driller Tom Schaefer	TREET ERTIES HIRE BORING, INC			Well Diagram File No. 41058-010 Image: Riser Pipe Date Installed 19 Sep 2014 Image: Screen H&A Rep. A. Fleming Image: Filter Sand Location See Plan Image: Grout Grout
Initial Water Level (depth bg	s) 20.3	ft		Bentonite Seal Datum BCB
SOIL/ROCK			z	
		DEPTH (ft.)	ELEVATIC (ft.)	WELL CONSTRUCTION DETAILS
				Type of protective cover <u>Roadway Box</u>
		0.0	72.0	Depth of Roadway Box below ground surface0.0 ft
0.5		0.5	/1.5	Depth of top of riser below ground surface0.1 ft
FILL	1001 - 101 - 101 - 101 - 10 1001 - 00 1001 - 00 1001 - 01 1001 - 01 1000 - 01 1000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 -			Type of protective casing <u>Roadway Box</u>
-		4		Length 0.7 ft
-	مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ			Inside diameter <u>6.0 in.</u>
-5 5.0	مَّنْ ذِيْرَةً مَنْ ذَيْرَةً فَنْ أَنْ مَنْ أَنْ فَنْ أَنْ عَلَيْهُ اللَّهِ عَلَيْهُ مَنْ أَنْ فَنَ أَنْ عَلَي المَّنْ مِنْ أَنْ مَنْ أَنْ مَنْ مَنْ أَنْ مَنْ مَنْ مَنْ أَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ م	- <u></u> -		Depth of bottom of Roadway Box 0.7 ft
				Type of riser pipe Schedule 40 PVC
GLACIAL TILL	مۇلىقى مەرەلىقى مەربىك بۇرنىڭ مەربىك مەربىكى مەربىك مەربىكى مەربىك مەربىكى مەربىكى	e <u>- 0 - 0</u>		Inside diameter of riser pipe <u>2.0 in.</u>
	۲۰۱۰-۵۰، ۲۰۱۰-۵۰، ۱۹۰۵ - ۲۰ ۵۰۰ - ۲۰ ۵۰۰ ۱۹۰۰ ۵۰ - ۲۰ ۵۰۰	10.0	62.0	Depth of bottom of riser pipe15.0 ft
± F10				Type of Seals Top of Seal (ft) Thickness (ft)
				Concrete 0.0 0.5
		13.0	59.0	Bentonite 10.0 3.0
		10.0	00.0	
2- 2-15 GLACIOLACUSTRINE DEPOSITS		15.0	57.0	Diameter of borehole4.0 in
				Depth to top of well screen15.0 ft
				Type of screen Machine slotted Sch 40 PVC
8- ±				Screen gauge or size of openings0.010 in
-20				Diameter of screen 2.0 in.
				Type of Backfill around Screen Filter Sand_
GLACIAL TU L				Depth to bottom of well screen25.0 ft
				Bottom of silt trap
		25.0	47.0	Depth of bottom of borehole25.0 ft

APPENDIX C

Groundwater Modeling Results

99 Tremont Street, Brighton, MA File No. 41058-011 Groundwater Modeling using Modflow

Modflow was used to evaluate the effect on the groundwater from the installation of a permanently drained soil nail wall as part of the 99 Tremont Street construction. Modflow is a numerical modelling tool that evaluates groundwater flow in saturated media, and was used to produce flownets to assess the current and post construction water conditions at and around the site. The water table was modeled based on the water table observed in the recently installed observation wells HA14-B01(OW) and HA14-B07(OW). Recorded groundwater levels can be found in the boring logs in Appendix B.

The following flownets were produced using Modflow. A two-dimensional grid was constructed with spacing of 1 ft horizontally and 1 ft vertically. It is assumed the current constructed basements are not equipped with underdrains, and the hydraulic conductivity of the glacial till is $1x10^{-4}$ cm/s. Type I or constant head boundaries were used on either side of the model to simulate a high water condition. The basements were modelled as impermeable structures. The model was run at a steady state condition.

Model: Existing site conditions with groundwater recorded in recent observation wells.

Decreasing the conductivity to 1×10^{-6} cm/s did not change the theoretical long-term affect that the wall drains have on the groundwater. The range of conductivities tested was varied from 1×10^{-6} to 1×10^{-4} cm/s.

APPENDIX D

Everett High School Soil Nail Wall

Inclinometer Results (Lateral Wall Movement) Photos of Soil Nail Wall Construction

NOTE: 1. ALL ELEVATIONS ARE IN FEET AND REFER TO EVERETT CITY BASE (ECB) DATUM.

> 2. POSITIVE DISPLACEMENT INDICATES MOVEMENT TOWARD THE EXCAVATION.

HALEY & ALDRICH	NEW EVERETT HIGH SCHOOL EVERETT, MASSACHUSETTS
	CUMULATIVE DISPLACEMENT
UNDERGROUND	
ENGINEERING &	
ENVIRONMENTAL	
SOLUTIONS	FILE NO. 31118-030 DATE: AS SHOWN

NOTE: 1. ALL ELEVATIONS ARE IN FEET AND REFER TO EVERETT CITY BASE (ECB) DATUM.

2. POSITIVE DISPLACEMENT INDICATES MOVEMENT TOWARD THE EXCAVATION.

New Everett High School Everett, Massachusetts

Photo # 1: Site before construction

Photo #2: Site before construction

Photo #3: First layer of shotcrete and drainage strips

Photo #4: Reinforcement prior to shotcrete. Drainage strips in background

Photo #5: Prepping wall for shotcrete

Photo #6: Soil nails, shotcrete, reinforcement and drainage strips

Photo #7: Second layer of shotcrete

Photo #8: Drilling of soil nails

*Photo #*9. Four lifts of soil nails and shotcrete completed, prepping for fifth lift

Photo #10: Drilling of soil nails

Photo #11: Drilling final row of soil nails

*Photo #*12: Completed wall prior to final facing

New Everett High School Everett, Massachusetts

*Photo #*13: Reinforcement prior to final wall facing application

Photo #15: Completed wall

Photo #14: Completed wall

*Photo #*16: Side view of wall (nearly vertical)

APPENDIX E

Soil Nail Wall Case Study

The Bravern Project, Bellevue, Washington

Temporary Soil Nail Walls

<u>THE BRAVERN</u> BELLEVUE, WA

The Bravern - Phase I & II project, developed by Schnitzer Northwest was begun in 2005 and completed in 2009 and is a mixed-use commercial and residential development located in the heart of downtown Bellevue, Washington. The project encompasses 3 city blocks bounded by NE 8th Street to the north, 112th Ave NE along the east, NE 6th Street along the south, and 110th Ave NE to the west. The development includes several high-rise office and residential towers, and a 9-level below grade parking structure that required an excavation that reached up to 87 feet below the adjacent city streets.

Skanska USA was the Prime Contractor for the project and Malcolm Drilling provided the Design-Build shoring system with ourselves as designer. The parking garage excavation for both phases of the project required a total of roughly 155,000 SF of wall face that was temporarily shored with soil nailing. The existing Meydenbauer Center was located on the city block to the southeast of the site and required direct underpinning by the temporary shoring wall. The temporary soil nail wall at the north end of the site was up to 87 feet deep and is considered the deepest known temporary soil nail wall in the United States. The deflection of this wall was roughly 1-1/4" at the completion of construction, well within the expected performance.

Figure 1. View of Bravern Excavation toward Meydenbauer Convention Center.

Along the southeast wall, the existing Meydenbauer Center was directly under-pinned through the use of small diameter vertical elements that were drilled adjacent to the existing footing and connected via steel brackets attached to the beams (Figure 1). The soil nail wall in this area was 60-ft deep and was designed using an earth-pressure approach with a no-load zone and fully prestressed soil nails in the upper part of the wall, resulting in less than 1/4" of movement to the existing structure.