

Expanded Project Notification Form

October 18, 2013

submitted to Boston Redevelopment Authority

submitted by **Trinity Northampton Limited Partnership** 75 Federal Street, 4th Floor Boston, MA 02110

in collaboration with Boston Public Health Commission

prepared by Fort Point Associates, Inc.

in association with The Architectural Team Nitsch Engineering McPhail Associates, Inc. Howard/Stein-Hudson Associates, Inc. Copley Wolff Design Group Noran/Siani Engineering, Inc. Novus Environmental, Inc. WilmerHale

TABLE OF CONTENTS

1.0 Summary

1.1	Project Identification1-	-1
1.2	Project Summary1	-1
1.2	2.1 Overview1·	-1
1.3	Public Review Process1-	-4
1.4	Public Benefits1-	-4
1.5	Project Alternatives1-	-5
1.5	5.1 No Action Plan1-	-5
1.5	5.2 Proposed Project1-	-5
1.5	5.3 Alternative One1	-6
1.6	Summary of Required Permits and Approvals1-	-6
1.7	Project Team1	-7

2.0 Project Description

2.1	Proje	ect Location	2-1
2.2	Plan	ning Context	2-1
2.3	Prop	posed Project	2-2
2.	3.1	Alternative One	2-3
2.	3.2	Housing	2-3
2.	3.3	Fitness Center, Gymnasium, and Pool	2-4
2.	3.4	Commercial Space	2-4
2.	3.5	Parking and Circulation	2-4
2.4	Con	dominium Structure	2-5
2.5	Com	pliance with Boston Zoning Code	2-5

3.0 Urban Design

3.1	Introduction	3-1
3.2	Urban Design Principles	3-2
3.3	Massing, Form, and Façade Design	3-4
3.4	Green Roof	3-4
3.5	Service and Loading	3-5
3.6	Sustainable Design	3-5
3.6	5.1 Sustainable Design Principles	3-5
3.6	Article 37 - Green Buildings	3-5
3.6	.3 Prerequisite and Credit Narrative for the New Albany Tower	3-6
3.6	Prerequisite and Credit Narrative for 860 Harrison Avenue	3-9

4.0 Transportation

4.1 Introduction		
4.1.1	Project Description	4-1
4.1.2	Study Area	4-2
4.1.3	Methodology	4-2
4.2 Exis	ting Conditions	4-3
4.2.1	Existing Roadway Conditions	4-3
4.2.2	Existing Intersection Conditions	4-4
4.2.3	Existing Traffic Conditions	4-5
4.2.4	Existing Traffic Operations	4-6
4.2.5	Existing Parking	
4.2.6	Existing Public Transportation	4-11
4.2.7	Existing Pedestrian Conditions	
4.2.8	Existing Bicycle Conditions	
4.2.9	Car Sharing	
4.2.10	Loading and Service	4-14
4.3 Futu	Ire Conditions	4-14
4.3.1	No-Build Conditions	4-14
4.3.2	Background Growth	
4.3.3	Planned Development	4-15
4.3.4	Planned Infrastructure Improvements	4-15
4.3.5	No-Build Conditions Traffic Volumes	4-16
4.3.6	No-Build Conditions Traffic Operations	4-17
4.3.7	Build Conditions	
4.3.8	Site Access and Circulation	4-17
4.3.9	Trip Generation	4-20
4.3.10	Mode Split	
4.3.11	Vehicle Trip Generation	4-20
4.3.12	Trip Distribution	
4.3.13	Build Conditions Traffic Operations	
4.3.14	Parking	
4.3.15	Public Transportation	4-28
4.3.16	Pedestrian and Bicycle Trips	
4.3.17	Bicycle Accommodations	4-29
4.3.18	Loading and Service Accommodations	4-30
4.4 Transportation Mitigation Measures4-3		
4.5 Eva	uation of Short Term Construction Impacts	

5.0 Environmental

5.1	Introduction	. 5-	1
5.2	Shadow	. 5-	1

5.2.1	Overview	5-1
5.2.2	Conclusion	5-3
5.3 Day	light	5-3
5.3.1	Methodology	5-3
5.3.2	Conclusion	5-3
5.4 Wir	ıd	5-4
5.4.1	Methodology	5-4
5.4.2	Results	5-5
5.4.3	Mitigation	5-6
5.5 Sola	ır Glare	5-6
5.6 Air	Quality	5-6
5.7 Noi	se	5-7
5.8 Stor	mwater Management and Water Quality	5-7
5.8.1	DEP Stormwater Management Policy Standards	5-8
5.8.2	Mitigation Measures	5-11
5.8.3	Coordination with the Boston Water & Sewer Commission	5-11
5.9 FE <i>N</i>	IA Flood Zones	5-11
5.10 Geo	technical and Groundwater	5-12
5.10.1	Geotechnical	5-12
5.10.2	Groundwater	5-13
5.10.3	Environmental Site Assessment	
5.11 Soli	d and Hazardous Materials	5-14
5.11.1	Building Renovations	5-14
5.11.2	Operating and Disposal Plan	5-15
5.12 Con	struction Impacts and Plans	5-15
5.12.1	Construction Management Plan	5-15
5.12.2	Construction Activity Schedule	5-15
5.12.3	Perimeter Protection/Public Safety	5-16
5.12.4	Construction Traffic Impacts	5-16
5.12.5	Construction Worker Parking	5-16
5.12.6	Construction Air Quality	5-16
5.12.7	Construction Noise Impacts	5-17
5.12.8	Utility Protection During Construction	5-17
5.12.9	Rodent Control	5-17
5.13 Hist	oric Resources	5-18
5.14 Tide	elands	5-18

6.0 Infrastructure

6.1	Introduction	.6-1
6.2	Sanitary Sewer System	.6-1
6.2	2.1 I/I Mitigation	.6-3
6.3	Water Supply System	.6-4

6.4	Storm	water	6-4
6.4	1.1	Existing Drainage Conditions	6-4
6.4	1.2	Proposed Drainage Conditions	6-5
6.5	Energ	y and Telecommunications	6-5

LIST OF FIGURES

- Figure 1-1 Locus Map
- Figure 1-2 Project Site Plan
- Figure 1-3 Aerial Perspective Looking North
- Figure 1-4 Aerial Perspective Looking South
- Figure 1-5 Aerial Perspective Looking West
- Figure 1-6 View from Albany Street and Northampton Street
- Figure 1-7 View from Harrison Avenue and Northampton Street
- Figure 1-8 View from Albany Street and Massachusetts Avenue
- Figure 2-1 Aerial View Looking North
- Figure 2-2 Aerial View Looking South
- Figure 2-3 Existing Conditions Ground Plane
- Figure 2-4 Existing Conditions Survey
- Figure 3-1 First Floor Plan / Parking Level 1
- Figure 3-2 Second Floor Plan / Parking Level 2
- Figure 3-3 Third Floor Plan / Parking Level 3
- Figure 3-4 Fourth Floor Plan
- Figure 3-5 Fourth Floor Plan (Alternative One)
- Figure 3-6 Fifth and Sixth Floor Plan
- Figure 3-7 Fifth and Sixth Floor Plan (Alternative One)
- Figure 3-8 Seventh Floor Plan
- Figure 3-9 Seventh Floor Plan (Alternative One)
- Figure 3-10 Typical Floor Plan
- Figure 3-11 West Elevation Northampton Street
- Figure 3-12 East Elevation Massachusetts Avenue
- Figure 3-13 South Elevation Albany Street
- Figure 3-14 Site Section
- Figure 3-15 Public Realm Plan
- Figure 3-16 LEED Checklist Albany Tower
- Figure 3-17 LEED Checklist 860 Harrison Avenue
- Figure 4-1Study Area Intersections
- Figure 4-2 Existing Conditions (2013) Traffic Volumes, a.m. Peak Hour

- Figure 4-3 Existing Conditions (2013) Traffic Volumes, p.m. Peak Hour
- Figure 4-4Existing Parking Demand 35 Northampton Street Garage
- Figure 4-5 Off-Street Parking
- Figure 4-6 On-Street Parking in the Study Area
- Figure 4-7 Curbside Inventory
- Figure 4-8 Public Transportation
- Figure 4-9 Existing Pedestrian Conditions
- Figure 4-10 Existing Bicycle Conditions
- Figure 4-11 Bicycle and Carshare Locations
- Figure 4-12 Background Projects
- Figure 4-13 2018 No-Build traffic volumes, a.m. Peak Hour
- Figure 4-14 2018 No-Build traffic volumes, p.m. Peak Hour
- Figure 4-15 Site Plan
- Figure 4-16 Trip Distribution
- Figure 4-17 Proposed Project Build Conditions (2018) Traffic Volumes, a.m. Peak Hour
- Figure 4-18 Proposed Project Build Conditions (2018) Traffic Volumes, p.m. Peak Hour
- Figure 4-19 Alternative One Build Conditions (2018) Traffic Volumes, a.m. Peak Hour
- Figure 4-20 Alternative One Build Conditions (2018) Traffic Volumes, p.m. Peak Hour
- Figure 4-21 Proposed Project Build Parking Demand: 35 Northampton Street Garage
- Figure 4-22 Alternative One Build Parking Demand: 35 Northampton Street Garage
- Figure 5-1 Shadow Study Vernal Equinox: March 21, 9:00 am
- Figure 5-2 Shadow Study Vernal Equinox: March 21, Noon
- Figure 5-3 Shadow Study Vernal Equinox: March 21, 3:00 pm
- Figure 5-4 Shadow Study Summer Solstice: June 21, 9:00 am
- Figure 5-5 Shadow Study Summer Solstice: June 21, Noon
- Figure 5-6 Shadow Study Summer Solstice: June 21, 3:00 pm
- Figure 5-7 Shadow Study Summer Solstice: June 21, 6:00 pm
- Figure 5-8 Shadow Study Autumnal Equinox: September 21, 9:00 am
- Figure 5-9 Shadow Study Autumnal Equinox: September 21, Noon
- Figure 5-10 Shadow Study Autumnal Equinox: September 21, 3:00 pm
- Figure 5-11 Shadow Study Autumnal Equinox: September 21, 6:00 pm
- Figure 5-12 Shadow Study Winter Solstice: December 21, 9:00 am
- Figure 5-13 Shadow Study Winter Solstice: December 21, Noon
- Figure 5-14 Shadow Study Winter Solstice: December 21, 3:00 pm
- Figure 5-15 Daylight Impact Analysis Albany Street
- Figure 5-16 Daylight Impact Analysis Northampton Street
- Figure 5-17 Study Site and Surroundings
- Figure 5-18 Conceptual Landscape Site Plan
- Figure 5-19 Annual Pedestrian Wind Conditions No Build Configuration
- Figure 5-20 Annual Pedestrian Wind Conditions Build Configuration
- Figure 5-21 South End Landmark District and Protection Area

LIST OF TABLES

Table 2-1	Building Program – Proposed Project2-3
Table 2-2	Building Program – Alternative One2-3
Table 2-3	Residential Unit Types2-4
Table 4-1	Level of Service Criteria (HCM Except) 4-7
Table 4-2	Existing (2013) Level of Service Summary a m Peak Hour 4-8
Table 4-3	Existing (2013) Level of Service Summary, a.m. Peak Hour 4-9
Table 4-3	Local Buses and Bus Ranid Transit
Table 4-4	No Build (2018) Loval of Sanvica Summary, a m. Poak Hour 418
Table 4-5	No Build (2018) Level of Service Summary, a.m. Feak Hour 410
Table 4-0	RTD Area 15 Mode Shares 4 21
Table 4-7	Vehicle Trip Congration Summary 4.21
Table 4-0	Proposed Project Puild (2019) Lovel of Service Summary, a.m. Posk
Table 4-9	Hour 4.22
Table 4 10	Provide the standard Drain at Durild (2010) Louis of Convict Summary in the Deals
Table 4-10	Proposed Project Build (2016) Level of Service Summary, p.m. Peak
T.L. 4 11	Hour
Table 4-11	Alternative One Build (2018) Level of Service Summary, a.m. Peak
T 4 4 0	Hour
Table 4-12	Alternative One Build (2018) Level of Service Summary, p.m. Peak
	Hour
Table 4-13	Public Transportation Trip Generation Summary
Table 4-14	Pedestrian and Bicycle Trip Generation Summary4-29
Table 4-15	Level of Service Summary, a.m. Peak Hour4-32
Table 4-16	Level of Service Summary, p.m. Peak Hour4-33
Table 5-1	Daylight Analysis Results (percentage obstructed)5-4
Table 6-1	Estimated New Sewage Discharges – Proposed Use
Table 6-2	Estimated New Sewage Discharges – Alternative Use with Office6-2
Table 6-3	I/I Mitigation6-3
	-

APPENDICES

- 1. Transportation Study
- 2. Wind Study

Chapter 1

PROJECT SUMMARY

1.1 PROJECT IDENTIFICATION

Project Name:	Northampton Square
Address/Location:	Massachusetts Avenue between Albany Street and Harrison
	Avenue in Boston, MA
Project Proponent:	Trinity Northampton Limited Partnership

1.2 PROJECT SUMMARY

1.2.1 OVERVIEW

The Northampton Square Campus (the "Campus") consists of a 3.59 acre parcel bounded by Massachusetts Avenue on the north side, Albany Street on the east side, Northampton Street on the south side, and Harrison Avenue on the west side. The Campus contains several different components including a 29-story residential building at 35 Northampton Street (Northampton Tower), a 12-story residential building at 860 Harrison Avenue, the Miranda Creamer Building housing the offices of the Boston Public Health Commission (BPHC), the South End Fitness Center, the Carter Auditorium, a two-story commercial building along Massachusetts Avenue, and a parking garage that accommodates up to 539 vehicles (see Figure 1-1, Locus Map). The Campus was built between 1969 and 1973 to house the Boston City Hospital School of Nursing. The Boston Public Health Commission acquired the site on July 1, 1996 and has managed the property ever since. The Campus does not include the airrights structure that spans Massachusetts Avenue from Boston Medical Center to and over a portion of the Campus.

Located in Lower Roxbury, the Northampton Square Campus is a vital asset to the BPHC and the City of Boston. The existing 29-story and 12-story residential buildings provide 347 low-rent units of housing to low wage earners, many of whom work in the adjacent medical district that includes Boston Medical Center, the BPHC, Boston University School of Medicine, and numerous other public and private employers. Included in the 347 units are 299 studio apartments that average 362 net square feet. These units are a perfect example of the "micro apartments" recently called for by the Boston Redevelopment Authority to encourage the creation of small, affordable units within the City. Rents for these 299 "micro apartments" are currently priced below market. The Miranda Creamer building on Albany Street and the commercial storefronts along Massachusetts and Harrison Avenues have provided office space for the BPHC and a variety of public health related programs. The South End Fitness Center, which includes a cardio and weight room, a pool, and a basketball court,

serve the recreational needs of a number of organizations and individuals from the larger neighborhood. The BPHC's Carter Auditorium serves as a meeting space for a variety of agency training activities. The 539-space parking garage, albeit much underutilized, is also an important resource to the people that live at or work in the Campus area.

The Campus, however, has suffered from much deferred maintenance over the years since there have not been sufficient resources to adequately maintain and invest in this aging property. As a result, this 40-year old property is at the end of its capital maintenance cycle, and simply put, its continued viability will require a major capital The mechanical systems within each component are outdated and investment. extremely inefficient, leading to wasted water and energy, along with very high operating costs. The windows are single glazed in steel frames causing resident discomfort and significant heat loss. The electric service is outdated and needs to be upgraded. All interior fixtures and finishes must be replaced or refurbished. The residential units do not meet handicap accessibility requirements. Trash chutes in the 29-story and 12-story residential buildings are inoperable. The current configuration of the Campus's many entrances and exits make securing this property - and the many people that live, work and come and go at the Campus -- a nearly impossible The approximately 40-year old property, which provides substantial proposition. benefits to the City, is physically dysfunctional and needs a major capital investment.

In the fall of 2010, the BPHC, recognizing the need to enter into a public/private partnership to access the capital required to serve this property, issued a Request for Qualifications seeking a developer to redevelop various components of the site that are in need of significant capital improvements. On December 16, 2010, Trinity Northampton Limited Partnership, an affiliate of Trinity Financial, Inc., was designated as the developer of the Campus by the BPHC Board. Since that time, Trinity has had numerous meetings with the BPHC, occupants of the Campus, and local and State elected officials to put together a redevelopment plan for Northampton Square. On August 2012, Trinity Northampton Phase One Limited Partnership filed a Project Notification Form (PNF) with the Boston Redevelopment Authority (BRA). The PNF was for the rehabilitation of the existing Northampton Tower and the addition of a one-story connector between this tower and the lobby of 860 Harrison Avenue. The BRA approved the project on September 13, 2012. Construction and renovation has already commenced and will be completed by December 2014. Since this component of the Campus has already been permitted, the unit counts, improvements, and impacts are not described in this Expanded PNF.

The proposed Project is for the construction of a 23-story tower (Albany Tower) on Albany Street at the corner of Northampton Street and the rehabilitation of the 12story residential building at 860 Harrison Avenue. The plans described in this document reflect the proposed Project (see Figure 1-2, Project Site Plan, Figure 1-3, Aerial Perspective Looking North, Figure 1-4, Aerial Perspective Looking South, Figure 1-5, Aerial Perspective Looking West, Figure 1-6, Corner of Albany Street and Northampton Street, Figure 1-7, Corner of Harrison Avenue and Northampton Street, and Figure 1-8, Corner of Massachusetts Avenue and Albany Street).

The major goals of the Northampton Square development plan ("the Project") are as follows:

- Continue to address the capital needs of the existing housing at the Campus, specifically the 102 units at 860 Harrison Avenue, and increase the supply of mixed-income housing at the site;
- Preserve the mixed-income affordable and low-rent nature of the existing housing;
- Make the redeveloped buildings far more energy efficient and create healthier and more secure living environments throughout the Campus; and
- Generate significant financial resources to support the public health programs of the BPHC.

The main components of the Project are as follows:

- A \$12 million renovation of the 12-story residential mid-rise at 860 Harrison Avenue that will include mechanical and electrical system upgrades, elevator system upgrades, all new energy efficient windows, exterior façade repairs, a new roof, renovated and code compliant trash chutes, new laundry rooms on most floors, unit improvements including all new and upgraded kitchens, a new storage closet in the studio units, new low flow plumbing fixtures, and new blinds throughout. This renovation work will also include the replacement of the mechanical equipment currently fronting Massachusetts Avenue with new equipment on the roof so this valuable street frontage can be repurposed into active commercial space.
- A new 23-story building (Albany Tower) to be developed at the corner of Albany and Northampton streets that will include either 218 residential units or 190 residential units and approximately 40,000 sf of additional office space for the BPHC. The auditorium, pool, gym, and fitness center that currently exist at this location will be retained as well as the existing Miranda Creamer building on Albany Street.
- Reuse of the existing parking garage to serve the needs of the Campus, including the new Albany Street building. The existing garage is underutilized and can serve the needs of the entire Campus. Upgrades will include additional handicapped parking spaces, accessible entrances and exits, bicycle racks, Zipcar spaces, and improved security features.

• The open plaza area on top of the parking garage will be renovated into a successful open space amenity for residents, complete with additional areas of green roof (including rooftop farming activities such as the Boston Natural Areas Network's Urban Agriculture Youth Conservation Corps), providing storm water capture, solar gain reduction and improved stormwater runoff quality.

When completed, the overall Campus will be significantly improved. While not every building at the Campus will be renovated as part of this Project, the infusion of new capital will provide a major upgrade and extend the useful life of many of the existing buildings.

1.3 PUBLIC REVIEW PROCESS

The Proponent regularly meets with the existing residents of the Northampton Square Campus and has also met with the local elected officials, several public agencies, the Roxbury Strategic Master Plan Oversight Committee, neighborhood representatives, local organizations, and other interested parties, seeking their input on the Project. A Letter of Intent was filed with the BRA on September 23, 2011 notifying the BRA of the Proponent's intent to file this Project Notification Form in accordance with the requirements of Article 80B. In accordance with the Mayor's Executive Order Relative to the Provision of Mitigation by Development Projects in Boston, an impact advisory group (IAG) will be appointed with up to 15 representatives from areas surrounding the site and with local representation.

1.4 PUBLIC BENEFITS

Northampton Square is a unique property in the City of Boston – it contains a mix of uses and a diverse group of residents that all coexist to create a community in a primarily institutional area of the City. Many of the residents are low wage employees of the institutions located within the adjacent medical district. Of equal importance is the fact that these apartments have also been one of the few if not the only housing resource in the City for low wage earners that cannot afford South End/Lower Roxbury market rents. As a result, the housing provided at Northampton Square is a critical affordable and workforce housing resource to the City of Boston. Without the major reinvestment effort that is proposed, the functionality of the property is in jeopardy and the City is at risk of losing an important asset.

The Proponent has committed to a number of public benefits that will improve the Northampton Square Campus and the surrounding area, and include:

- The Project will preserve or create between 292 and 320 units of housing, at least 102 (31%) of which will be affordable and at least 347 units (61%) will be affordable when 35 Northampton is included.
- At least 50 redeveloped units in the Project (within both 860 Harrison Avenue and Northampton Tower) will be set aside to house clients of the BPHC's social science programs.
- A number of sustainable/green design features will be incorporated into the Project to preserve and protect the local environment, including a large green roof above the parking garage, racks to store 210-238 bicycles, and highly efficient and sustainable housing units in an area well served by public transit.
- The Project will create approximately 925 construction phase employment opportunities, and the proponent will promote local employment through good-faith efforts to hire Boston residents.
- The Project will provide substantial property tax revenues to the City of Boston at full build-out and occupancy.
- The Project will invest over \$100 million in the Northampton Square Campus (over \$150 million when Northampton Tower is included).
- The Project (including Northampton Tower) will provide at least \$1.5 million annually to the BPHC in support of public health initiatives in the City of Boston.

1.5 PROJECT ALTERNATIVES

1.5.1 NO ACTION PLAN

If the No Action Plan were to be implemented, the property at the Northampton Square Campus would continue to fall into further disrepair, continue to be underutilized, and remain inefficient. The BPHC acquired the property in 1996, and while the BPHC has invested regularly as best it could to maintain the property, the buildings have never received the sort of major capital investment that this 40-year old asset sorely needs. The No Action Plan would result in further deterioration of the site and would discourage investment in the neighborhood.

1.5.2 PROPOSED PROJECT

The proposed Project will substantially improve the use of the site for residential uses. It will preserve the local housing stock, including affordable and below market rent units. Since the project site is almost built out at the ground level, additional development above existing footprint will have little, if any, environmental impacts. The site is located in a densely developed neighborhood that already has excellent transit connections to the MBTA Silver Line and other bus lines. Upgrades to the mechanical systems, plumbing, windows, and HVAC systems will substantially reduce impacts to the environment by reducing water and energy use.

1.5.3 ALTERNATIVE ONE

Alternative One is similar to the Proposed Project except it will utilize four floors of the new 23-story tower for office use in the place of 28 residential units. The building exteriors will remain the same as in the Proposed Project and will provide similar benefits as the proposed Project. There will be minor increases in traffic volume and daytime parking due to the increased office space of approximately 40,000 sf. Related impacts are described in the Chapter 4, Transportation, Chapter 5, Environment, and Chapter 6, Infrastructure.

1.6 SUMMARY OF REQUIRED PERMITS AND APPROVALS

The Proponent will secure the required local, state, and federal permits and approvals prior to commencement of construction. The following is a list of the anticipated permits and approvals:

Agency	Permit/Approval	
Federal		
Environmental Protection Agency	NPDES Notice of Intent for Construction Dewatering	
	NPDES Stormwater Management Notice of Intent	
Federal Aviation Administration	Notice of Proposed Construction – Crane/Building	
Dept. of Housing and Urban Development	NEPA Finding of No Significant Impact	
State		
Department of Environmental Protection	Notification of Construction/Demolition	
	Sewer Connection Source Registration	
Massachusetts Water Resources Authority	8(m) Permit	
Local		
Mayor of the City of Boston	Approval Authorizing Disposition of Property	
Boston City Council	Approval Authorizing Disposition of Property	
Boston Public Health Commission	Approval Authorizing Disposition of Property	
Boston Redevelopment Authority	Article 80B Large Project Review	
	Cooperation Agreement	
	Affordable Housing Agreement	
	121A Redevelopment Project Approval	
	Planned Development Area Development Plan	
	Approval	
	South End Urban Renewal Plan Minor Modifications	

Boston Civic Design Commission South End Landmarks Commission	Recommendation Pursuant to Article 80 Review Certificate of Appropriateness
Boston Transportation Department	Transportation Access Plan Agreement
	Construction Management Plan
Boston Water & Sewer Commission	Site Plan Approval
	General Service Application
	Sewer Connection Permit
Boston Inspectional Services Department	Building Permit
Boston Public Works Department	Street Opening Permit
Boston Public Improvement Commission	Various Permits for Work in Public Ways.
	Discontinuance

The Proponent filed an Environmental Notification Form in January 2012, and the Secretary issued a Certificate in March 2012. In the Certificate, the Secretary determined that no further MEPA review is required and declined to require an additional Public Benefits Review.

1.7 PROJECT TEAM

OWNER

Barbara Ferrer

Boston Public Health Commission 1010 Massachusetts Avenue, 6th Floor Boston, MA 02118 bferrer@bphc.org

PROPONENT

Patrick Lee

Trinity Northampton Limited Partnership c/o Trinity Financial, Inc. 75 Federal Street, 4th Floor Boston, MA 02110 (617) 720-8400 plee@trinityfinancial.com

LEGAL COUNSEL

Katharine Bachman

Wilmer Hale 60 State Street Boston, MA 02109 (617) 526-6000 Katharine.Bachman@wilmerhale.com

ARCHITECTURAL DESIGN

Phil Renzi

The Architectural Team 50 Commandment's Way Chelsea, MA 02150 (617) 889-4402 prenzi@architecturalteam.com

PLANNING/PERMITTING CONSULTANT

Jamie Fay, President Fort Point Associates, Inc. 33 Union Street, 3rd Floor Boston, MA 01208 (617) 357-7044 x204 jfay@fpa-inc.com

Richard Jabba

Fort Point Associates, Inc. 33 Union Street, 3rd Floor Boston, MA 01208 (617) 357-7044 x208 rjabba@fpa-inc.com

GEOENVIRONMENTAL and ENVIRONMENTAL

Ambrose Donovan McPhail Associates, Inc. 2269 Massachusetts Avenue Cambridge, MA 02140 (617) 868-1420 adonovan@mcphailgeo.com

CIVIL

John Schmid Nitsch Engineering 186 Lincoln Street Boston, MA 02111 (617) 338-0063 jschmid@jnei.com

HVAC DESIGN

Matt Bean

Norian/Siani Engineering, Inc. 241 Crescent Street Waltham, MA 02453 (781) 398-2250 mattb@ns-engineering.com

TRANSPORTATION

Jane Howard

Howard/Stein-Hudson Associates, Inc. 38 Chauncy Street, 9th Floor Boston, MA 02111 (617) 482-7080 jhoward@hshassoc.com

Joe SanClemente

Howard/Stein-Hudson Associates, Inc. 38 Chauncy Street, 9th Floor Boston, MA 02111 (617) 482-7080 jsanclemente@hshassoc.com

WIND

Bill Waechter Novus Environmental Inc. Research Park Centre 150 Research Lane, Suite 105 Guelph, ON N1G 4T2 billw@novusenv.com

LANDSCAPE ARCHITECT

Sean Sanger Copley Wolff Design Group 160 Boylston Street Boston, MA 02116 (617) 654-9000 ssanger@copley-wolff.com

CONTRACTOR

TBD

Figure 1-1 Locus Map Source: USGS

Figure 1-3 Aerial Perspective - View Looking North Source: The Architectural Team, 2013

Figure 1-4 Aerial Perspective - View Looking South Source: The Architectural Team, 2013

Figure 1-5 Aerial Perspective - View Looking West Source: The Architectural Team, 2013

Figure 1-6 View from Albany Street and Northampton Street Source: The Architectural Team, 2013

Figure 1-7 View from Northampton Street Source: The Architectural Team, 2013

Figure 1-8 Corner of Albany Street and Massachusetts Avenue Source: The Architectural Team, 2013

PROJECT DESCRIPTION

Chapter 2

2.1 PROJECT LOCATION

The Northampton Square Campus (the "Campus") is in the South End/Lower Roxbury neighborhood of Boston located on Massachusetts Avenue between Albany Street and Harrison Avenue, one block away from the Boston Medical Center and Boston University Medical Campuses (see Figure 2-1, Aerial View Looking North). The Project site is 3.59 acres and is bound by Massachusetts Avenue on the north side, Albany Street on the east side, Northampton Street on the south side, and Harrison Avenue on the west side (see Figure 2-2, Aerial View Looking South, Figure 2-3, Existing Conditions – Ground Plane, Figure 2-4, Existing Conditions Survey).

2.2 PLANNING CONTEXT

The Campus was built by the City between 1969 and 1973 to serve as Boston City Hospital's School of Nursing complex. The two existing residential buildings functioned as dormitories for the students. The Boston Public Health Commission (BPHC) acquired the site in 1996 at the time of the formation of the Boston Medical Center and has managed it ever since. The existing units at 35 Northampton Street and 860 Harrison Avenue provide much needed housing that is affordable to low wage earners near Boston Medical Center, Boston University Medical School, and other major public and private employers in the area. Of the existing units, 299 are small (micro units that average 362 square feet), but they make housing accessible to households with incomes below 60% of the area median income despite the fact they are not regulated as affordable units by the City of Boston. In the interest of maintaining the mixed-income community at the Campus, Trinity and BPHC will implement a set of formal restrictions on the units to protect their affordability.

The Project is located on the South End /Lower Roxbury border and is consistent with the 2004 Roxbury Strategic Master Plan. While no specific goals were outlined for this parcel, the Master Plan sets forth a number of community-wide goals for improving existing housing stock, upgrading publicly owned housing, and creating new housing units on publicly-owned land. In addition, the Master Plan seeks to create new development opportunities for transit-oriented development and for higher density projects in the adjacent Crosstown Center Area and the Melnea Cass Boulevard to the south and west.

The Project is located just to the west of the study area of the Boston Redevelopment Authority's 2011 Harrison-Albany Corridor Strategic Plan, the planning initiative developed to guide future development so that the diverse needs of the community are met without jeopardizing the needs and uses of the existing neighborhood. The proposed development plan for the Campus complements the goals and strategies outlined in the Strategic Plan and balances the demand for new housing with the commitment to maintain affordability of the existing housing units.

The South End Landmark District is located directly across Harrison Avenue from the Project and extends north and west into the South End, primarily west of Harrison Avenue. The Project is located within the Harrison Avenue/Albany Street Protection Area, an area designated to ensure that new development is architecturally compatible with the District. Due to the existing high-rise buildings within the Campus, the addition of the new Albany Street tower (Albany Tower) at the furthermost corner of the site from the Landmark District will be barely visible and will blend in visually and be compatible with the District.

The Boston University Medical Center (BUMC is to the north of the Project across Massachusetts Avenue. The BUMC is composed of the Boston Medical Center and Boston University Medical Campus, which includes the Medical School, Dental School, and School of Public Health. Development activities within this area are implemented in accordance with the approved Institutional Master Plans developed by the institutions and serve to support the high quality care that is delivered at the Boston Medical Center, and the advanced research and educational opportunities provided at the medical schools. The Project is compatible with these important components of the health infrastructure and will provide housing opportunities for workers at the medical center area.

2.3 PROPOSED PROJECT

The existing Campus includes the existing 234 unit (245 unit post renovation), 29-story tower at 35 Northampton Street (Northampton Tower), the Miranda Creamer office building on Albany Street, a two-story office/retail building along Massachusetts Avenue, the existing fitness center, and the existing 539-space parking garage, owned and operated by the BPHC, with sufficient capacity for the new and renovated housing (see Table 2-1; Building Program). The renovation of 35 Northampton Street and a new connector between this building and 860 Harrison Avenue was recently approved and is not part of this Project. However, these approved units and areas are included and noted in the discussion of the proposed Project.

The Project contains two main components – (1) the renovation of 860 Harrison Avenue, and (2) the construction of a new 23-story building on the corner of Northampton and Albany streets. As part of the first phase (35 Northampton Street project), the number of units in Harrison Avenue will be reduced from 112 to 102 due to the inclusion of office space for BPHC programs. In total, the Project will preserve or create 292-320 units of housing, at least 102 (31%) of which will be affordable (and at least 347 units (61%) of the Campus will be affordable when the units at 35 Northampton Street are included. In addition, a new landscaped courtyard will cover the roof of the parking garage.

Program Use	Existing/Approved Dimensions	Proposed Dimensions	
Residential (includes amenity and management space)	258,876 gsf 347 units	522,087 gsf 565 units	
Fitness Center, gymnasium, and pool	35,148 gsf	41,037 gsf	
Commercial/Office (1)	77,971 gsf	88,515 gsf	
Parking	195,765 gsf 539 spaces	195,765 gsf 537 spaces	
Total	567,760 gsf	847,404 gsf	

Table 2-1: Building Program – Proposed Project

(1) Includes office space within Miranda Creamer building, new tower, 860 Harrison Avenue, and 2-story building along Massachusetts Avenue

(2) gsf = gross square feet

2.3.1 ALTERNATIVE ONE

Alternative One would replace 28 residential units on floors 4 through 7 of the 23story tower with approximately 40,000 sf of office space. This change would reduce the proposed new units in the tower from 218 to 190 units. The office space will be used by the BPHC. This space would be accessed from the main lobby on the ground floor along Northampton Street and from the office space within the Miranda Creamer building.

Table 2-2: Building Program – Alternative One

Program Use	Existing/Approved Dimensions	Proposed Dimensions	
Residential (includes amenity and	258,876 gsf	487,666 gsf	
management space)	347 units	537 units	
Fitness Center, gymnasium, and pool	35,148 gsf	41,037 gsf	
Commercial/Office (1)	77,971 gsf	122,936 gsf	
Parking	195,765 gsf	195,765 gsf	
	539 spaces	537 spaces	
Total	567,760 gsf	847,404 gsf	

(1) Includes office space within Miranda Creamer building, new tower, 860 Harrison Ave., and 2-story building along Massachusetts Avenue.

2.3.2 HOUSING

The existing residential buildings (35 Northampton Street and 860 Harrison Avenue) at the Campus currently provide 347 low-rent units of housing to low wage earners, many of whom work in the adjacent medical district that includes Boston Medical Center, the Boston Public Health Commission, Boston University School of Medicine, and numerous other public and private employers (see Table 2-3: Residential Unit Types). The housing at 860 Harrison Avenue needs significant repair and restoration in order to continue to provide these valuable resources to the City of Boston. The renovation of 860 Harrison Avenue will (a) complete the work necessary to provide for the long-term stability and code compliance of the property, and (b) significantly

improve the energy efficiency of the building and incorporate appropriate green building initiatives.

Unit Type	Existing/Approved 35 Northampton St	Proposed Renovation 860 Harrison Ave	Proposed New Building	Alternative One New Building
Efficiency	242	55	39	34
One Bedroom	3	21	118	103
Two Bedroom	0	26	61	53
Total	245	102	218	190

Table 2-3: Residential Unit Types

The proposed 23-story building will provide 218 new apartments, consisting of 39 efficiency apartments, 118 one-bedroom apartments, and 61 two-bedroom apartments. The residential building will be located at the corner of Albany and Northampton streets, relating well to the larger massing, scale, and urban fabric of the existing commercial and medical buildings in this area. The proposed design for the new building respects and complements the existing arrangement of the surrounding buildings. This location also places the building well away from the South End residential neighborhoods that are located north of Harrison Avenue.

2.3.3 FITNESS CENTER, GYMNASIUM, AND POOL

The Northampton Square Campus currently contains the South End Fitness Center (35,148 gsf) at the corner of Albany Street and Northampton Street that contains a weight and cardio workout room, a basketball court, and a swimming pool.

The Project will substantially improve access to the fitness center with a new entrance and lobby located along Northampton Street within the new Albany Tower. The lobby will provide elevator access to the three levels of the fitness center.

2.3.4 COMMERCIAL SPACE

The Miranda Creamer building, at the corner of Massachusetts Avenue and Albany Street, and a two-story storefront on Massachusetts Avenue are also part of the Project site. These two commercial spaces are currently being used as BPHC program office space.

2.3.5 PARKING AND CIRCULATION

An existing three-story parking garage that accommodates 539 parking spaces is contained within the Northampton Square Campus. The garage is currently neither handicap accessible, nor does it have any directly accessible paths into either of the existing residential buildings. A three and a half-story elevator connecting all three levels of the parking garage to the new main entry, lobby, management office, and mailroom in 860 Harrison Avenue was approved for construction in the previous project. Eleven (11) new handicap-accessible parking spaces within the garage will be provided. The new 23-story building will connect to the parking garage.

Parking for the Project, under either Build Alternative, will be accommodated within the existing public parking garage. Howard/Stein-Hudson Associates, Inc. conducted a detailed parking demand study of the existing public parking garage in June 2011, which is in Appendix 1, Transportation Study, and in August 2013. Both assessments indicated that there is adequate supply within this public parking garage to accommodate the parking demand associated with the new residential units, and/or office use, without affecting the current users. As described more fully in Chapter 4: Transportation, during the weekday mid-day period approximately 80% of the garage spaces are occupied, leaving approximately 100 unused spaces. The garage reaches its peak occupancy at about 2:00 p.m. Additionally, only about 29% of the garage spaces are used overnight. In other words, approximately 350 to 400 parking spaces are unused at night when parking demand from the 218 new residential units is expected to peak. Under an existing lease, the Boston Medical Center (BMC) is entitled to use up to 250 spaces at market rates for employees and visitors. Even with this commitment, the garage has adequate supply. In addition, to accommodate any surplus demand, the 1,250-space Crosstown Garage (a public garage) located just across Albany Street from the site, is currently significantly underutilized.

2.4 CONDOMINIUM STRUCTURE

The BPHC has converted the Site into a commercial condominium under the provisions of M.G.L. Chapter 183A, creating separate components of a mixed-use project for financing purposes. The condominium units that contain the residential buildings will be conveyed separately to ownership entities or leased to Trinity affiliates under long-term leases, in accordance with dictates of the financing for each of those condominium units. Unit 1 was conveyed to a BPHC affiliate and then leased to the Trinity affiliate, which is undertaking its renovation. Easements for utilities and access have been granted to meet the needs of the various components of the Project.

2.5 COMPLIANCE WITH BOSTON ZONING CODE

The Project is subject to land use controls contained in the City of Boston Zoning Code ("the Code"). In accordance with Article 80B of the Code, the Project is subject to the requirements of Large Project Review because it exceeds 50,000 square feet of new construction and 100,000 square feet of renovated space.

The Project is also subject to review by the Boston Civic Design Commission under Article 28 of the Code. The Project exceeds the thresholds for review by the Commission and thus the recommendation of the Boston Civic Design Commission will be sought prior to final BRA approvals.

The site is currently zoned as the Albany Street Medical Area Community Facilities sub district within the Roxbury Neighborhood District (Article 50 of the Code). This district was established to reflect the formerly predominant provision of health and educational services and is clearly outdated given the current uses on the site. Zoning relief is required and is proposed to be accomplished with a new Planned Development Area (PDA) designation. The PDA Development Plan will establish the use, dimensional and density requirements for the Project. In addition, like the approval for 35 Northampton Street, a 121A agreement will be needed for a real estate tax agreement for 860 Harrison Avenue in support of its affordable housing use.

The Project is within the Restricted Parking (Overlay) District established under Article 3, Section 3-1A. As no new parking facilities are proposed as part of the Project, the Project is consistent with the provisions of this district.

The Project is subject to Article 37 - Green Buildings of the Code. The new and retrofitted buildings will be LEED Certifiable.

The Project is subject to the South End Urban Renewal Plan (SEURP), as Amended. Minor Modifications to the SEURP were needed to in order to permit new development within a 20-foot setback area along Northampton and Albany streets, and to allow office use within 860 Harrison Avenue. These Minor Modifications were adopted and approved by the BRA on August 15, 2013.

Figure 2-1 Aerial View - Looking North Source: The Architectural Team, 2013

Figure 2-2 Aerial View - Looking South Source: The Architectural Team, 2013

Figure 2-3 Existing Conditions - Ground Plane Source: The Architectural Team, 2013

Figure 2-4 Existing Conditions Source: Nitsch Engineering, 2013

Chapter 3

URBAN DESIGN
3.1 INTRODUCTION

The Northampton Square Campus, built between 1969 and 1973, was originally built to house the Boston City Hospital School of Nursing, which closed in 1991. The Campus today consists of a 12-story residential building on Harrison Avenue, a 29-story residential tower (Northampton Tower), 3-story fitness center on Northampton Street, a 2-story commercial building along Massachusetts Avenue, and the Miranda Creamer Building, a 5-story office building on Albany Street. The Campus is also connected to the Yawkey Ambulatory Care Center at the Boston Medical Center by a structure that spans Massachusetts Avenue. All of the buildings are linked by a 3-level (above-grade) parking garage with 539 spaces. See Figures 2-1, 2-2, and 2-3.

Although currently home to hundreds of residents and employees, and located along important Boston public streets, the site lacks urban vitality. The buildings currently do not engage the street in a positive way for pedestrians. The notable lack of activity and transparency at the ground floor levels of the buildings compromises the pedestrian experience significantly.

The Proponent recognizes that there is a great and unique opportunity to transform and reenergize Northampton Square into a vibrant mixed-use development, and in the process, improve the public realm for most of an entire city block.

The redevelopment of Northampton Square has two phases. Phase 1, which was approved in 2012, involved the rehabilitation of the Northampton Tower at 35 Northampton Street and the construction of a ground-level connector between this building and 860 Harrison The program for this phase (Phase 2) of the Avenue along Northampton Street. Northampton Square redevelopment includes 320 total units (292 in Alternative One), split between two residential buildings. The existing 12-story building at 860 Harrison Avenue will be rehabilitated and includes 102 units and approximately 5,800 square feet (sf) of office space (5,800 sf of office space will be part of Unit 1). Figure 3-1 through Figure 3-14 show the floor plans, elevations, and a section of the proposed Project. A new, 218-unit, 23-story building (Albany Tower) is proposed at the corner of Albany and Northampton streets. In addition to the residential use, the building will also include a new main entrance and lobby for the fitness center along Northampton Street. The fitness center lobby will provide access to a new elevator that will serve the center's three levels. The new building will also include a new main entrance for the Miranda Creamer Building along Albany Street as well as approximately 5,600 sf of additional office space.

3.2 URBAN DESIGN PRINCIPLES

Northampton Square is located in a dynamic urban context at the juncture of Boston Medical Center Campus to the east, commercial and light industrial uses to the south and west, and the South End residential neighborhoods to the north. The urban design principles for the redevelopment of Northampton Square seek to reinforce the vitality and quality of life that is found in many areas of the surrounding neighborhoods and improve connectivity to neighboring areas by creating a pedestrian friendly and active public realm (see Figure 3-15, Public Realm Plan). Specifically, the urban design principles governing this Project are to:

- Enhance the public realm and pedestrian experience by rejuvenating the street edge with streetscape improvements and new ground floor uses.
- Recognize, respect, and reinforce the scale and character of the existing development as well as the surrounding area.
- Create new construction that is compatible with the existing Northampton Square buildings, while introducing a new diversity of architectural expression.
- Create new public open space and improve existing open spaces as outdoor amenities for residents and the public.
- Improve the environmental performance of the development.

As noted above, the existing streetscape and public realm about the Northampton Square Campus does not currently offer a good pedestrian experience. In its current state, the ground plane edge features primarily blank concrete walls and a host of mechanical and service equipment associated with the building. The main entrances for the various uses are not fitting for their use or their location. The fitness center does not in fact have an independent entrance, but shares the Northampton Tower residential entrance. The entrance to the Miranda Creamer building is not effectively available from the street, except through two fire egress stairs. In order to rejuvenate the streetscape and improve the public realm, the following improvements will be implemented as part of the overall Project:

Harrison Avenue – The approved Phase 1 design includes the replacement of the existing nondescript entry and blank concrete walls at 860 Harrison Avenue with a new vibrant and transparent main entry lobby addition at the corner of Harrison Avenue and Northampton Street. Phase 2 will build on this improvement with the addition of new large window opening created in existing blank concrete walls at the ground floor that will make new residential common spaces visually accessible from the street.

35 Northampton Street - The approved Phase 1 design includes removal of the existing parking lot and trash compactor on Northampton Street and replacement with a new glass structure that will link the 860 Harrison Avenue main entry lobby and the amenity/management space to the Northampton Tower elevator lobby. The dynamic contemporary form of the link structure, with a high percentage of transparent glass walls,

will provide a marked contrast and relief from the solid walls of concrete that currently dominate the ground plane. Phase 2 will make further improvements to the public realm along Northampton Street. A new main entry at the ground floor of the new building will give the fitness center a direct pedestrian entrance on Northampton Street as well providing the fitness center a new public face and identity. A new pocket park, located adjacent to the fitness center entry, will activate an existing underutilized area of the site while softening the existing concrete walls of the fitness center with new plantings, ornamental trees, and seating areas.

Albany Street – The most striking public realm improvements for the Project will occur along Albany Street. A new glass ground floor entry lobby for the Miranda Creamer Building is proposed at the north end of the new building providing a new public identity for the BPHC office building. North of this entrance, at the corner of Massachusetts Avenue, a new public plaza is proposed, marking the office entry lobby and providing a unique outdoor space with numerous trees, plantings, specialty paving, and ample seating. An independent residential entrance lobby is proposed at the south end of the new building, at the corner of Northampton Street. Combined with the adjacent fitness center entrance and pocket park on Northampton Street, this important corner will be greatly enhanced and activated for pedestrians. A new outdoor arcade extends the Albany Street sidewalk under the footprint of the new building, providing a pleasant pedestrian connection between the office entry and plaza to the north and residential and fitness center entries to the south.

The site survey revealed that Albany Street has been significantly reconfigured leaving a wide piece of land between the property line adjacent to the Miranda Creamer building and the back of the Albany Street sidewalk. The City's easement rights in this abandoned portion of the Albany Street Right-of-Way were never discontinued although it has functioned as part of the Northampton Square parcel and has been maintained by the BPHC. A petition to the Boston Public Improvement Commission will be filed to formally discontinue the City's easement rights leaving the fee interest with the BPHC. Easements for the few utilities within the area of discontinuance are being prepared.

Massachusetts Avenue – Streetscape and public realm improvements are proposed along Massachusetts Avenue in front of the north end of the 860 Harrison Avenue Building, near the corner of Harrison Avenue. The existing ground floor mechanical room at 860 Harrison Avenue that currently fronts on Massachusetts Avenue will be shifted to a new rooftop mechanical room allowing for the introduction of new office space. The existing blank concrete walls and mechanical louvers will be replaced with new transparent storefront glazing and an entry and canopy for the new office space. To mark the new office entrance and enhance this portion of Massachusetts Avenue, a small entry plaza is proposed. The plaza will feature new seating, plantings, specialty paving, and a new sculpture and lighting element focal point located near the corner.

3.3 MASSING, FORM, AND FAÇADE DESIGN

The proposed design for the new Albany Tower respects and complements the existing arrangement of surrounding buildings. The height and density of this new building is appropriately concentrated along Albany Street, relating well to the larger massing, scale, and urban fabric of the existing commercial and medical buildings in this area and locating the building well away from the South End residential neighborhoods north of Harrison Avenue.

The height and massing of the new building is designed to complement the scale and character of existing surrounding buildings as well as future developments approved at nearby Boston Medical Center parcels. At approximately 251 feet tall, the proposed building is lower than, but relates well to the approximately 270 foot tall existing Northampton Tower. The height will also be consistent with future approved projects such as the proposed 14-story/210 feet Inpatient Building for Boston Medical Center, proposed opposite the north end of the Miranda Creamer Building on Massachusetts Avenue, and the 19-story building approved for the Albany Fellows future development, just south of the Northampton Square development, on Albany Street and Fellows Street. Collectively, these buildings will work as an urban composition within the city, emphasizing the importance of the Boston Medical Center, Boston Public Health Commission, and the transformed Northampton Square development.

The façade treatment and form of the new building are designed to be compatible with the existing Northampton Square buildings, while introducing a new diversity of architectural expression. The new building's form is organized to create a slender and vertical appearance, complementing the proportions of the existing 35 Northampton Street tower. To accentuate the slender appearance, the ends of the building are articulated with glass curtainwall and metal panel, configured to emphasize a vertical proportion. The transparent ends mark the entries at grade and extend to the roof top, engaging a mechanical penthouse structure with angular rooflines that contrasts the regular shape of the existing tower. The dynamic penthouse structure adds a contemporary element to the areas skyline that is distinct. Between the building's transparent ends, the exterior building face will be carefully articulated with precast concrete and some elements of metal panel infill.

3.4 GREEN ROOF

The Project will include a substantial green roof with gardens and deck areas as an amenity for residents and tenants of the various buildings. Proposed on the garage rooftop, the green roof includes both active and passive recreational areas. At the west end of the green roof, a

tot lot and seating areas are proposed. At the east end, an existing vegetable garden will be maintained and improved. New walkways, surrounded by sedum and other plantings, connect these outdoor spaces to the various buildings. At just over 50,000 SF, the garage roof offers an enormous opportunity to create a unique urban green roof amenity, including urban farming, while allowing a material reduction of heat island effect and helping to manage rain water.

3.5 SERVICE AND LOADING

Loading for the Project is via an interior loading dock located on Albany Street with the entry/exit remaining its current location. This interior loading dock, with two bays, will service the entire development with service routes through the garage connecting to the various buildings.

3.6 SUSTAINABLE DESIGN

3.6.1 SUSTAINABLE DESIGN PRINCIPLES

The Northampton Square Project incorporates a wide range of sustainable design initiatives at both the proposed rehabilitation and new construction portions of the Project. The rehabilitation of 35 Northampton Street and 860 Harrison Avenue will transform the existing outdated buildings; reducing energy consumption and water usage, improving stormwater management, maximizing open space and improving indoor air quality. The proposed Albany Street tower will similarly exemplify the best practices of sustainable design as outlined below.

3.6.2 ARTICLE 37 – GREEN BUILDINGS

Article 37 of the Boston Zoning code requires that projects be designed as certifiable under the U.S. Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED) program. The new construction portion of the Project, the proposed Albany Street tower, will comply with Article 37 requirements for LEED certifiable status. The project team expects the Albany Tower to achieve a LEED NC Silver level (see Figure 3-16, LEED Checklist - Albany Tower). The rehabilitation portion of the Project, 860 Harrison Avenue, also incorporates numerous sustainable design features and is expected to be LEED certifiable. The following narrative outlines the LEED NC 2009 credits applicable to the proposed 23-story building.

3.6.3 PREREQUISITE AND CREDIT NARRATIVE FOR THE NEW ALBANY STREET TOWER

Sustainable Sites (SS)

- <u>Prerequisite 1</u> The Project Team will develop and implement an erosion and sedimentation control plan that is compliant with the 2003 EPA General Permit requirements for the Albany Street tower to reduce the pollution from construction activities by controlling soil erosion, waterway sedimentation, and airborne dust generation.
- <u>Credit 1</u> The location of the Albany Street tower will not disturb or disrupt any farmland, endangered species, wetlands or bodies of water making it eligible for SS Credit 1, Site Selection. In fact, this Project will make use of a densely populated and presently developed urban site.
- <u>Credit 2</u> The Albany Street tower is located in a dense, mixed-use neighborhood of commercial and residential occupancy with pedestrian access and a large selection (greater than 10) of basic services in the area.
- <u>Credit 4.1</u> This Project is proximate (less than a 1/4 mile) to several MBTA bus stops which provide connectivity throughout the city.
- <u>Credit 4.2</u> The Project will provide covered storage facilities for securing one bicycle per unit, up to 218 storage units, for the residents of the Albany Street tower.
- <u>Credit 4.3</u> Residents and visitors of the Albany Street tower will have access to, at minimum, two fuel-efficient Zipcars in a preferred parking space in the adjacent garage.
- <u>Credit 4.4</u> Given the capacity of parking that currently exists on the Northampton Square site and detailed analysis by traffic engineers related to current use, we are proposing that there be no new parking associated with the development of this Project.
- <u>Credits 6.1 and 6.2</u> As part of the redevelopment, the Project Team will be evaluating the ability of the Albany Street tower site to meet these criteria related to stormwater quantity reduction and quality improvement.
- <u>Credit 7.1</u> At least 50% of the Albany Street tower site's hardscape will have a SRI of at least 29.
- <u>Credit 7.2</u> The Project will be specifying roofing materials with a high SRI to meet the requirements of this credit.

Water Efficiency (WE)

<u>Prerequisite 1</u> – The building will use high performance, water efficient fixtures in bathrooms and kitchens reducing the burden on the municipal water supply and waste water systems. We expect water savings to exceed 30% as compared to the baseline.

- <u>Credit 2 Plan</u>tings at the Albany Street tower site will be minimal and drought tolerant. Trees and groundcover around the site perimeter will be drought tolerant and will only use minimal irrigation. In addition, new plantings and ground cover on the shared garage roof area will be drought tolerant.
- <u>Credit 3</u> The building will use high performance, water efficient fixtures in bathrooms and kitchens reducing the burden on the municipal water supply and waste water systems. We expect water savings to exceed 30% as compared to the baseline.

Energy & Atmosphere (EA)

- <u>Prerequisite 1</u> The Project Team will engage a certified commissioning agent to carry out fundamental commissioning of the building's energy systems.
- <u>Prerequisite 2</u> The building will exceed the ASHRAE 90.1 Energy Performance standard by at least 20% through the implementation of a high performance building envelope, high efficiency lighting and mechanical systems, and the incorporation of renewable technologies such as solar thermal. Once the geometries of the building are solidified through the BCDC review and approval process, an early stage energy model will be built to confirm compliance and be used as a decision making tool.
- <u>Prerequisite 3</u> The Project will not incorporate the use of CFC based refrigerants in building heating, cooling, ventilation, and refrigeration.
- <u>Credit 1</u> The building will exceed the ASHRAE 90.1 Energy Performance standard by at least 20% through the implementation of a high performance building envelope, high efficiency lighting and mechanical systems, and the incorporation of renewable technologies such as solar thermal. This will be confirmed through the energy modeling process.
- <u>Credit 3</u> Trinity will engage the required commissioning agent to provide enhanced commissioning services.
- <u>Credit 5</u> Trinity will develop a metering and tracking protocol for energy use at this building that meets the Measurement and Verification requirements.

Materials & Resources (MR)

• <u>Prerequisite 1</u> – The Albany Street tower will have easily-accessible designated areas for collection and storage of recyclable materials.

- <u>Credit 2</u> The project team will implement a construction waste management plan that identifies materials to be diverted from disposal and how collection of the materials will be done on site. At least 75% of the demolition and construction debris from the Project will be diverted from landfills.
- <u>Credit 4</u> At least 20% of the materials cost for this Project will be from materials with recycled content.
- <u>Credit 7 (maybe)</u> The project team is investigating the financial feasibility of incorporating 50% of the cost of wood based materials derived from wood that is FSC certified.

Indoor Environmental Quality (IEQ)

- <u>Prerequisite 1</u> The Project will meet the minimum requirements of Sections 4 through 7 of ASHRAE 62.1-2007 for mechanically ventilated spaces.
- <u>Prerequisite 2 -</u> Residents will be prohibited from smoking in their units, any common areas in the building, as well as anywhere that is within 25 feet of entries, air intakes, and operable windows.
- <u>Credit 3.1</u> The project team will develop and implement an Indoor Air Quality Management Plan (IAQ) which meets all stated requirements to be implemented by the contractor during the construction and preoccupancy phases of the building.
- <u>Credit 4.1</u> The project team will require that all sealants and adhesives are low VOC as outlined in the South Coast Air Quality Management District (SCAQMD) regulations.
- <u>Credit 4.2</u> The building will only include low or no VOC paints and coatings certified by Green Seal.
- <u>Credit 4.3</u> All carpet and associated products used in the building will be CRI Green Label Plus certified. Any hard surface flooring will be FloorScore certified. All adhesives and finishes will meet applicable VOC thresholds.
- <u>Credit 4.4</u> All composite wood used on the interior of the building will contain no added urea-formaldehyde resins.
- <u>Credit 6.1</u> The design will provide for individual lighting controls for at least 90% of building occupants and lighting system controllability will be supplied for all shared and multi-occupant spaces to enable lighting adjustments.
- <u>Credit 6.2</u> This Project will provide individual comfort controls for a majority of building occupants. All units will have individual thermostatic control. In addition, office space will

have individual control. Shared multi-occupant spaces will have controls that can be adjusted to suit group needs and preferences.

- <u>Credit 7.1</u> The building will include an HVAC system and building envelope designed to meet the requirements of ASHRAE Standard 55-2004.
- <u>Credit 7.2</u> Trinity will provide residents with a thermal comfort survey at approximately 10 months after occupancy. The survey will collect responses to overall satisfaction with thermal performance and if more than 20% of occupants are dissatisfied, corrective action will be taken.
- <u>Credit 8.1</u> The Albany Street tower will incorporate daylight glazing throughout the building; at least 75% of the regularly occupied areas will be daylight.
- <u>Credit 8.2</u> The glazing at this building will also provide views to at least 90% of the regularly occupied building areas.

Innovation & Design (ID)

- <u>Credit 1.2</u> The Project will earn an exemplary performance point for exceeding the public transportation access thresholds set by SS Credit 4.1.
- <u>Credit 1.3</u> The Project will earn an exemplary performance point for exceeding the development density and community connectivity thresholds set by SS Credit 2.
- <u>Credit 2</u> NEI's Lauren Baumann is an LEED accredited professional (BD&C and Homes) and is the green and sustainable design consultant on the Albany Street Tower Project.

3.6.4 PREREQUISITE AND CREDIT NARRATIVE FOR 860 HARRISON AVENUE

Sustainable Sites (SS)

- <u>Prerequisite 1</u> The Project Team will develop and implement an erosion and sedimentation control plan that is compliant with the 2003 EPA General Permit requirements for the existing residential complex to reduce the pollution from construction activities by controlling soil erosion, waterway sedimentation, and airborne dust generation.
- <u>Credit 1</u>–Given the existing nature of this Project, the rehabilitation work will not disturb or disrupt any farmland, endangered species, wetlands or bodies of water making it eligible for SS Credit 1, Site Selection.

- <u>Credit 2</u> The existing residential complex is located in a dense, mixed-use neighborhood of commercial and residential occupancy with pedestrian access and a large selection (greater than 10) of basic services in the area.
- <u>Credit 4.1</u> This Project is in very close proximity (less than a 1/4 mile) to several MBTA bus stops which provide connectivity throughout the city.
- <u>Credit 4.2</u> The Project will provide 20 covered bicycle storage spaces in the parking garage for the residents of 860 Harrison St.
- <u>Credit 4.3</u> Residents of 860 Harrison Street will have access to, at minimum, one fuel-efficient Zipcar in a preferred parking space in the adjacent garage.
- <u>Credit 4.4</u> Given the capacity of parking that currently exists on the Northampton Gardens site and detailed analysis by traffic engineers related to current use, there will be no new parking associated with the rehabilitation of this Project.
- <u>Credit 5.2</u> As part of the redevelopment of the site, the roof of the adjacent parking structure will be converted into usable green space for resident enjoyment. The area of this space far exceeds the 20% requirement of this credit.
- <u>Credit 7.1</u> At least 50% of the existing residential complex's hardscape will have a SRI of at least 29.
- <u>Credit 7.2</u> The Project will include the use of a light colored roof materials that meets the SRI requirements of this credit.

Water Efficiency (WE)

- <u>Prerequisite 1</u> The building will be outfit with high performance, water efficient fixtures in bathrooms and kitchens reducing the burden on the municipal water supply and waste water systems. We expect water savings to exceed 30% as compared to the baseline.
- <u>Credit 2</u> Plantings incorporated into the redesign of the garage building green roof will be chosen for a combination of aesthetics and drought tolerance. Ground covers such as sedum will be planted where water intensive turf is typically installed. We expect that this, along with an efficient irrigation system that makes use of storm water, will result in a 50% reduction of irrigation water needed for the site as compared to the baseline assumptions.
- <u>Credit 3</u> The building will use high performance, water efficient fixtures in bathrooms and kitchens reducing the burden on the municipal water supply and waste water systems. We expect water savings to exceed 30% as compared to the baseline.

Energy & Atmosphere (EA)

- <u>Prerequisite 1</u> A limited commissioning scope will be provided for the Project. The Commissioning Agent will be a member of the M and P engineering staff. All new equipment and major existing pieces of equipment will be reviewed for proper installation and operation by this individual.
- <u>Prerequisite 2</u> The work being done as a part of the rehabilitation of these buildings will have a marked and significant impact on its overall energy consumption. Andelman and Lelek Engineering were engaged to model the building to predict the energy savings. Their study indicates a 19% reduction, by cost, of gas and electric expenditures based on the scheduled envelope and system improvements.
- <u>Prerequisite 3</u> The Project will not incorporate the use of CFC based refrigerants in building heating, cooling, ventilation and refrigeration.
- <u>Credit 1</u> The study by Andelman and Lelek Engineering indicates a 19% reduction, by cost, of gas and electric expenditures based on the scheduled envelope and system improvements.

Materials & Resources (MR)

- <u>Prerequisite 1</u> The building will have easily-accessible designated areas for collection and storage of recyclable materials in the trash rooms on each floor.
- <u>Credit 1.1</u> 100% of the existing walls, floors, and roofing structure will be maintained during this rehabilitation.
- <u>Credit 1.2</u> The Project team will be rehabilitating the building with a careful eye towards retaining and reusing interior non-structural elements where possible, and will exceed a retention percentage of 50% for these elements.
- <u>Credit 2</u> The Project team will implement a construction waste management plan which indentifies materials that will be diverted from disposal and how collection of the materials will be done on site. At least 75% of the demolition and construction debris from the Project will be diverted from landfills.
- <u>Credit 4</u> At least 20% of the materials cost for this Project will be from materials with recycled content.

Indoor Environmental Quality (IEQ)

• <u>Prerequisite 1</u> – The rehabilitation of this building complies with all of the mandatory requirements of ASHRAE 62.1-2007.

- <u>Prerequisite 2</u> Upon lease turnover, the units at 35 Northampton Street will become nonsmoking. Residents will be prohibited from smoking in any common areas in the building, as well as anywhere that is within 25 feet of entries, air intakes, and operable windows.
- <u>Credit 3.1</u> The Project team will develop and implement an Indoor Air Quality Management Plan (IAQ) which meets all stated requirements to be implemented by the contractor during construction. This is a credit of particular importance given the occupied nature of the building during the construction period, and much care will be taken to ensure a healthy environment for residents.
- <u>Credit 4.1</u> The Project team will require that all sealants and adhesives are low VOC as outlined in the South Coast Air Quality Management District (SCAQMD) regulations.
- <u>Credit 4.2</u> The building will only include low or no VOC paints and coatings certified by Green Seal.
- <u>Credit 4.3</u> All carpet and associated products used in the building will be CRI Green Label Plus certified. Any hard surface flooring will be FloorScore certified. All adhesives and finishes will meet applicable VOC thresholds.
- <u>Credit 4.4</u> All composite wood used on the interior of the building will contain no added urea-formaldehyde resins.
- <u>Credit 6.1</u> The design will provide for individual lighting controls for at least 90% of building occupants and lighting system controllability will be supplied for all shared and multi-occupant spaces to enable lighting adjustments.
- <u>Credit 6.2 –</u> This Project will provide individual comfort controls for a majority of building occupants. All units will have individual thermostatic control. In addition, office space will have individual control. Shared multi-occupant spaces will have controls that can be adjusted to suit group needs and preferences.
- <u>Credit 8.1</u> This building has a significant amount of glazing which provides daylighting to at least 75% of the regularly occupied areas.
- <u>Credit 8.2</u> The glazing at this building will also provide views to at least 90% of the regularly occupied building areas.

Innovation & Design (ID)

• <u>Credit 1.2</u> - The Project will earn an exemplary performance point for exceeding the public transportation access thresholds set by SS Credit 4.1.

- <u>Credit 1.3</u> The Project will earn an exemplary performance point for exceeding the development density and community connectivity thresholds set by SS Credit 2.
- <u>Credit 2</u> NEI's Lauren Baumann is an LEED accredited professional (BD&C and Homes) and is the green and sustainable design consultant on the Northampton Square Project.

Figure 3-1 First Floor Plan / Parking Level 1 Source: The Architectural Team, 2013

Figure 3-2 Second Floor Plan / Parking Level 2 Source: The Architectural Team, 2013

Figure 3-3 Third Floor Plan / Parking Level 3 Source: The Architectural Team, 2013

Figure 3-4 Fourth Floor Plan Source: The Architectural Team, 2013

Expanded PNF

 \otimes

Figure 3-5 Fourth Floor Plan (Alternative One) Source: The Architectural Team, 2013

Figure 3-6 Fifth and Sixth Floor Plan Source: The Architectural Team, 2013

Expanded PNF

Figure 3-7 Fifth and Sixth Floor Plan (Alternative One) Source: The Architectural Team, 2013

Figure 3-8 Seventh Floor Plan Source: The Architectural Team, 2013

Figure 3-9 Seventh Floor Plan (Alternative One) Source: The Architectural Team, 2013

Expanded PNF

Figure 3-10 **Typical Floor Plan** Source: The Architectural Team, 2013

Figure 3-13 South Elevation - Albany Street Source: The Architectural Team, 2013

Northampton Square

Boston, Massachusetts

Figure 3-14 Site Section Source: The Architectural Team, 2013

Figure 3-15 **Public Realm Plan** Source: The Architectural Team, 2013

Project	2009 for New Construction and	Major Renovation	าร		Albany S	Street T
2 3 Sustai	inable Sites P	ossible Points: 26		Materi	als and Resources, Continued	
? N Prerea 1	Construction Activity Pollution Prevention		Y ?	Credit 4	Recycled Content	1 t
Credit 1	Site Selection	1		Credit 5	Regional Materials	1 t
Credit 2	Development Density and Community Connectivit	V 5		1 Credit 6	Ranidly Renewable Materials	1
1 Credit 3	Brownfield Redevelopment	, 3 1	1	Credit 7	Certified Wood	1
Credit 4.1	Alternative Transportation—Public Transportation	n Access 6				•
Credit 4.2	Alternative Transportation—Bicycle Storage and (Changing Rooms 1	11	4 Indoor	Environmental Quality Possible Points	s• 1
Credit 4.3	Alternative Transportation—I ow-Emitting and Eu	el-Efficient Vehicles 3				J. I.
Credit 4.4	Alternative Transportation—Parking Capacity	2 Enterent Ventetes 5	Y	Prerea 1	Minimum Indoor Air Quality Performance	
1 Credit 5.1	Site Development–Protect or Restore Habitat	- 1	Y	Prerea 2	Environmental Tobacco Smoke (ETS) Control	
1 Credit 5.2	Site Development–Maximize Open Space	1		Credit 1	Outdoor Air Delivery Monitoring	1
1 Credit 6.1	Stormwater Design—Quantity Control	1		Credit 2	Increased Ventilation	1
1 Credit 6.2	Stormwater Design—Quality Control	1	1	Credit 3.1	Construction IAO Management Plan–During Construction	1
Credit 7.1	Heat Island Effect—Non-roof	1		Credit 3.2	Construction IAO Management Plan-Before Occupancy	1
Credit 7.2	Heat Island Effect-Roof	1	1	Credit 4.1	Low-Emitting Materials—Adhesives and Sealants	1
Credit 8	Light Pollution Reduction	1	1	Credit 4.2	Low-Emitting Materials—Paints and Coatings	1
	5		1	Credit 4.3	Low-Emitting Materials—Flooring Systems	1
6 Water	r Efficiency P	ossible Points: 10	1	Credit 4.4	Low-Emitting Materials-Composite Wood and Agrifiber Products	1
				1 Credit 5	Indoor Chemical and Pollutant Source Control	1
Prereq 1	Water Use Reduction-20% Reduction		1	Credit 6.1	Controllability of Systems-Lighting	1
2 Credit 1	Water Efficient Landscaping	2 to 4	1	Credit 6.2	Controllability of Systems-Thermal Comfort	1
2 Credit 2	Innovative Wastewater Technologies	2	1	Credit 7.1	Thermal Comfort-Design	1
2 Credit 3	Water Use Reduction	2 to 4	1	Credit 7.2	Thermal Comfort-Verification	1
			1	Credit 8.1	Daylight and Views—Daylight	1
2 23 Energ	y and Atmosphere P	ossible Points: 35	1	Credit 8.2	Daylight and Views—Views	1
Prereq 1	Fundamental Commissioning of Building Energy S	ystems	3	3 Innova	tion and Design Process Possible Point:	s: 6
Prereq 2	Minimum Energy Performance					
Prereq 3	Fundamental Refrigerant Management			Credit 1.1	Innovation in Design:	1
2 12 Credit 1	Optimize Energy Performance	1 to 1	9 1	Credit 1.2	Innovation in Design: Public Transportation Access	1
7 Credit 2	On-Site Renewable Energy	1 to 7	1	Credit 1.3	Innovation in Design: Development Density and Connectivity	1
Credit 3	Enhanced Commissioning	2		Credit 1.4	Innovation in Design:	1
2 Credit 4	Enhanced Refrigerant Management	2		Credit 1.5	Innovation in Design:	1
Credit 5	Measurement and Verification	3	1	Credit 2	LEED Accredited Professional	1
2 Credit 6	Green Power	2	2 1		al Priority Credits Possible Point	te A
1 9 Mater	ials and Resources P	ossible Points: 14		Region		сэ. т
			1	Credit 1.1	Regional Priority: SSc7.2 Heat Island Effect - Roof	1
	Storage and Collection of Recyclables		1	Credit 1.2	Regional Priority: SSc7.1: Heat Island Effect- non-roof	1
Prereq 1		nd Roof 1 to ?	1	Credit 1.3	Regional Priority: SSc6.1 Stormwater Quantity Control	1
Prereq 1 3 Credit 1.1	Building Reuse—Maintain Existing Walls, Floors, a					
Prereq 1	Building Reuse—Maintain Existing Walls, Floors, a Building Reuse—Maintain 50% of Interior Non-Stru	ctural Elements 1		Credit 1.4	Regional Priority:	1
Prereq 1 3 Credit 1.1 1 Credit 1.2 Credit 2	Building Reuse—Maintain Existing Walls, Floors, a Building Reuse—Maintain 50% of Interior Non-Stru Construction Waste Management	ctural Elements 1 1 to 2		Credit 1.4	Regional Priority:	1

Projec	2009 for New Construction and Ma the Checklist	ajor Renovations	860 Harrison St. Reha	ıbili
6 Sustai	nable Sites Poss	ible Points: 26	Materials and Resources, Continued	
N Prereg 1	Construction Activity Pollution Prevention		2 Credit 4 Recycled Content	1
Credit 1	Site Selection	1	2 Credit 5 Regional Materials	1
Credit 2	Development Density and Community Connectivity	5	1 Credit 6 Rapidly Renewable Materials	1
1 Credit 3	Brownfield Redevelopment	1	1 Credit 7 Certified Wood	1
Credit 4.1	Alternative Transportation–Public Transportation Ac	cess 6		
Credit 4.2	Alternative Transportation-Bicycle Storage and Char	nging Rooms 1	9 6 Indoor Environmental Quality Possible Points:	1
Credit 4.3	Alternative Transportation-Low-Emitting and Fuel-E	fficient Vehicles 3		
Credit 4.4	Alternative Transportation—Parking Capacity	2	Y Prereq 1 Minimum Indoor Air Quality Performance	
1 Credit 5.1	Site Development—Protect or Restore Habitat	1	Y Prereq 2 Environmental Tobacco Smoke (ETS) Control	
Credit 5.2	Site Development-Maximize Open Space	1	1 Credit 1 Outdoor Air Delivery Monitoring	1
1 Credit 6.1	Stormwater Design-Quantity Control	1	1 Credit 2 Increased Ventilation	1
1 Credit 6.2	Stormwater Design-Quality Control	1	1 Credit 3.1 Construction IAQ Management Plan—During Construction	1
1 Credit 7.1	Heat Island Effect—Non-roof	1	1 Credit 3.2 Construction IAQ Management Plan—Before Occupancy	1
Credit 7.2	Heat Island Effect-Roof	1	1 Credit 4.1 Low-Emitting Materials—Adhesives and Sealants	1
1 Credit 8	Light Pollution Reduction	1	1 Credit 4.2 Low-Emitting Materials—Paints and Coatings	1
			1 Credit 4.3 Low-Emitting Materials—Flooring Systems	1
4 Water	Efficiency Poss	ible Points: 10	1 Credit 4.4 Low-Emitting Materials—Composite Wood and Agrifiber Products	1
			Credit 5 Indoor Chemical and Pollutant Source Control	1
Prereq 1	Water Use Reduction—20% Reduction		1 Credit 6.1 Controllability of Systems—Lighting	1
2 Credit 1	Water Efficient Landscaping	2 to 4	1 Credit 6.2 Controllability of Systems—Thermal Comfort	1
2 Credit 2	Innovative Wastewater Technologies	2	Credit 7.1 Thermal Comfort—Design	1
Credit 3	Water Use Reduction	2 to 4	Credit 7.2 Thermal Comfort–Verification	1
			Credit 8.1 Daylight and Views—Daylight	1
29 Energ	y and Atmosphere Poss	ible Points: 35	1 Credit 8.2 Daylight and Views—Views	1
Prereq 1	Fundamental Commissioning of Building Energy Syste	ems	3 3 Innovation and Design Process Possible Points:	6
Prereq 2	Minimum Energy Performance			
Prereq 3	Fundamental Refrigerant Management		1 Credit 1.1 Innovation in Design:	1
13 Credit 1	Optimize Energy Performance	1 to 19	Credit 1.2 Innovation in Design: Public Transportation Access	1
7 Credit 2	On-Site Renewable Energy	1 to 7	Credit 1.3 Innovation in Design: Development Density and Connectivity	1
2 Credit 3	Enhanced Commissioning	2	1 Credit 1.4 Innovation in Design:	1
2 Credit 4	Enhanced Refrigerant Management	2	1 Credit 1.5 Innovation in Design:	1
3 Credit 5	Measurement and Verification	3	Credit 2 LEED Accredited Professional	1
2 Credit 6	Green Power	2	1 3 Regional Priority Credits Possible Points:	Λ
6 Mater	ials and Resources Poss	ible Points: 14		-
			1 Credit 1.1 Regional Priority: SSc7.2 Heat Island Effect - Roof	1
	Storage and Collection of Recyclables		1 Credit 1.2 Regional Priority:	1
Prereq 1			1 Credit 1.3 Regional Priority:	1
Prereq 1 Credit 1.1	Building Reuse—Maintain Existing Walls, Floors, and	Roof 1 to 3	a degional money.	
Prereq 1 Credit 1.1 Credit 1.2	Building Reuse—Maintain Existing Walls, Floors, and I Building Reuse—Maintain 50% of Interior Non-Structur	ral Elements 1 to 3	1 Credit 1.4 Regional Priority:	1
Prereq 1 Credit 1.1 Credit 1.2 Credit 2	Building Reuse—Maintain Existing Walls, Floors, and I Building Reuse—Maintain 50% of Interior Non-Structu Construction Waste Management	ral Elements 1 to 3 1 to 2	1 Credit 1.4 Regional Priority:	1

TRANSPORTATION

Chapter 4

4.1 INTRODUCTION

Howard/Stein-Hudson Associates, Inc. (HSH) has conducted an evaluation of the transportation impacts associated with the Northampton Square Campus Project ("the Project"), located in the South End/Lower Roxbury neighborhood of Boston. This transportation study adheres to the Boston Transportation Department (BTD) *Transportation Access Plan Guidelines* and Article 80 development review process and includes an evaluation of existing conditions, future conditions with and without the Project, projected parking demand, loading operations, transit services, and pedestrian activity.

4.1.1 PROJECT DESCRIPTION

The Boston Public Health Commission's (BPHC's) Northampton Square Campus (the "Campus") is located on the border of the South End and Lower Roxbury on a block defined by Massachusetts Avenue, Harrison Avenue, Northampton Street and Albany Street. Currently located on-site are several BPHC offices and other facilities - the 245-unit and 103-unit existing buildings at 35 Northampton Street and 860 Harrison Avenue); the Carter Auditorium on Northampton Street; the South End Fitness Center on Northampton Street; the Miranda Creamer Building on Albany Street; and a two-story commercial storefront along Massachusetts Avenue. An existing 539-space parking garage on the property, owned and operated by BPHC, primarily serves the aforementioned abutting buildings although public parking is also permitted. Vehicular access to the garage is provided on Northampton Street.

As detailed in the 35 Northampton Street Project Notification Form (PNF) submitted to the BRA on August 3, 2012, and approved on September 13, 2012, the first phase of the Project involves the renovation of the existing 234-unit residential tower at 35 Northampton Street; the addition of 11 new handicap-accessible (HC) units within this building; the elimination of nine residential units at 860 Harrison Avenue to accommodate the relocation of BPHC offices from 35 Northampton Street; and the construction of a new entry lobby shared by 860 Harrison and 35 Northampton Street.

For the purposes of this chapter, the Proposed Project includes the following alternatives:

• **Proposed Project** (Residential Project) – includes the construction of a new residential high-rise building containing approximately 218 residential units and the renovation of the existing residential building located at 860 Harrison Avenue. The renovation of 860 Harrison Avenue will reduce the number of

units from the Phase 1 total of 103 to 102 to allow for the creation of accessible units. The net increase in residential units on the Campus would be 217 units.

• **Alternative One** (Residential/Office Project)– the same as Alternative 1, but replaces 28 residential units on floors 4 through 7 of the proposed tower with approximately 40,000 square feet (sf) of office space. This alternative would yield a net increase of 189 residential units on the Campus.

No new parking will be provided for the Project. A detailed parking study conducted by Howard/Stein Hudson Associates, Inc. (HSH) indicated that there is adequate supply within the existing garage to accommodate the parking demand associated with the Project under either Build alternative. It is worth noting that the public Crosstown Garage located at 7-17 Melnea Cass Boulevard, within close walking distance of the Project Site, is currently significantly underutilized.

4.1.2 STUDY AREA

The study area includes intersections along Massachusetts Avenue and Northampton Street. The site is bound by Massachusetts Avenue to the east, Northampton Street to the west, Harrison Avenue to the north and Albany Street to the south. As shown in **Figure 4-1**, the study area includes the following five intersections:

- Massachusetts Avenue/Harrison Avenue (signalized);
- Massachusetts Avenue/Albany Street (signalized);
- Northampton Street/Albany Street/Crosstown Drive (signalized);
- Northampton Street/Garage Driveway (unsignalized); and
- Northampton Street/Harrison Avenue (unsignalized).

4.1.3 METHODOLOGY

This transportation study was conducted in accordance with BTD guidelines and is described below.

The existing condition analysis includes an inventory of the existing (2013) transportation conditions such as roadway and intersection conditions, parking and curb usage, transit, pedestrian circulation, bicycle facilities, loading, and site conditions.

The future transportation conditions analysis evaluates potential transportation impacts associated with the Project and other neighboring projects. Long-term impacts are evaluated for the year 2018, based on a five-year horizon from the existing year (2013). Expected roadway, parking, transit, pedestrian, bicycle accommodation, and loading conditions and deficiencies are identified. This section includes the following scenarios:

- The 2018 No-Build condition scenario includes both general background traffic growth and traffic growth associated with specific developments that are planned near the Project. Transportation infrastructure improvements in the study area are identified and incorporated into the 2018 No-Build conditions.
- The 2018 Build condition scenario includes Project-generated traffic volume estimates for each building alternative added to the traffic volumes developed as part of the 2018 No-Build conditions scenario. This section also details parking, loading operations, bicycle storage, Transportation Demand Management (TDM) measures to reduce dependence on automobiles, and any appropriate mitigation measures.

Finally, an evaluation of short-term traffic impacts associated with construction activities is provided.

4.2 EXISTING CONDITIONS

This section includes descriptions of existing study area roadway geometries, intersection traffic control, peak-hour vehicular and pedestrian volumes, average daily traffic volumes, transit availability, parking and curb usage, and loading conditions.

4.2.1 EXISTING ROADWAY CONDITIONS

The study area roadways are described below. The descriptions reflect functional classifications by the Massachusetts Department of Transportation (MassDOT) Highway Division's Office of Transportation Planning.

Massachusetts Avenue is an urban principal arterial, running north–south from Cambridge and the northwestern part of the Boston metropolitan area to Columbia Road to the southeast. Massachusetts Avenue carries about 40,000 vehicles total in both directions on an average weekday. Within the study area, Massachusetts Avenue features two travel lanes in each direction, divided by a narrow concrete median. Additional turning lanes are provided at the intersections with Harrison Avenue and Albany Street. Metered on-street parking is provided in the northbound direction between Albany Street and Harrison Avenue, while resident parking is found in both directions of Massachusetts Avenue north of Harrison Avenue. Bus stops are located regularly on both sides of Massachusetts Avenue serving several MBTA routes and the Boston University Medical Center shuttle routes within the campus. Sidewalks on each side range in width from 7 to 23 feet. Near the site, the mix of land uses includes medical, retail, office, and residential.

The City of Boston is nearing the end of construction on a \$14.5 million improvement program for Massachusetts Avenue from 150 feet south of Albany Street to 100 feet

north of St. Botolph Street. The project includes repaving the roadway and fully modernizing all traffic signal equipment and interconnecting it with the City's traffic management center via a new fiber optic connection. Left turn bays have been installed at certain intersections to reduce congestion and improve traffic safety. New curbing, sidewalks, street lighting and trash receptacles are being installed and landscaping enhanced with trees and shrubbery. A critical element of the plan, as discussed below, is bike accommodations in the corridor.

As signal timing improvements have not been finalized by the City, analyses below are based on the existing signal timings.

Albany Street is an urban minor arterial roadway that runs east-west parallel to Harrison Avenue within the study area from Herald Street in the east to Eustis Street in the west. Albany Street provides two travel lanes in each direction near the site separated by a median. Parking is not permitted along either side of the street. Sidewalks on each side range in width from 8 to 10 feet. Land uses along Albany Street include a mix of research, educational, city services, medical uses, and in and outpatient medical uses.

Harrison Avenue is an urban minor arterial running east-west providing access between Essex Street in the east to Warren Street in Roxbury. Harrison Avenue provides one travel lane in each direction near the Site. Parking is permitted on both sides of the street. Bus stops are located regularly on both sides of Harrison Avenue. Sidewalks on each side range in width from 9 to 11 feet.

Northampton Street is an urban major collector running north-south parallel to Massachusetts Avenue within the study area from Melnea Cass Boulevard to Columbus Avenue. Northampton Street provides one travel lane in each direction near the project area with parking permitted on both sides of the street. Sidewalks on each side range in width from 6.5 to 10 feet.

4.2.2 EXISTING INTERSECTION CONDITIONS

Massachusetts Avenue/Harrison Avenue is a signalized intersection with four approaches. Harrison Avenue eastbound and westbound approach provides one 20-foot left-turn/through/right-turn lane that functions as one 10-foot left-turn/through lane and one 10-foot through/right-turn lane. Massachusetts Avenue northbound and southbound approaches provide three travel lanes; a 10-foot exclusive left-turn lane, a 12-foot exclusive through lane, and an 18-foot shared through/right-turn lane. Crosswalks, wheelchair ramps, pedestrian pushbuttons and indications are provided on all approaches.

Massachusetts Avenue/Albany Street is a signalized intersection with four approaches. Albany Street eastbound approach provides an 11-foot shared left-turn/through lane, a 12-foot exclusive through lane, and a 12-foot exclusive right-turn lane. Albany Street westbound approach provides an 11-foot left-turn-only lane, a 12-foot through lane, and a 12-foot shared through/right-turn lane. Massachusetts Avenue northbound approach provides two 12-foot through lanes and one 11-foot right-turn-only lane; left-turns onto Albany Street are prohibited. Massachusetts Avenue southbound approach provides one 10-foot left-turn-only lane, one 11-foot through lane, and one 11-foot shared through/right-turn lane. Crosswalks, wheelchair ramps, pedestrian pushbuttons and indications are provided on all approaches.

Northampton Street/Albany Street/Crosstown Drive is a signalized intersection with four approaches. Albany Street eastbound approach provides an 11-foot shared left-turn/through and an 11-foot through/right-turn lane. Albany Street westbound approach provides an 11-foot left-turn/through and an 11-foot through/right-turn lane. The Crosstown Drive northbound approach provides an 11-foot left-turn/through and a 12-foot exclusive right-turn lane. The Northampton Street southbound approach provides an 11-foot left-turn/through/right-turn lane. Crosswalks, wheelchair ramps, pedestrian pushbuttons and indications are provided on all approaches.

Northampton Street/Garage Driveway is an unsignalized intersection with three approaches. The garage driveway westbound is approximately 48 feet wide. The Northampton Street northbound approach provides an 11-foot through/right-turn lane. The Northampton Street southbound approach provides an 11-foot left-turn/through lane. On-street parking is allowed on both sides of the roadway.

Northampton Street/Harrison Avenue is an unsignalized intersection with four approaches. Harrison Avenue eastbound and westbound approaches provide one 12-foot left-turn/through/right-turn lane with 8-foot parking lane. The Northampton Street northbound and southbound stop controlled approaches provide one 20-foot left-turn/through/right-turn lane with a parking lane starting 200 feet south of the intersection. Crosswalks and wheelchair ramps are provided on the westbound approach. Field observations showed that Northampton Street has no visible roadway striping and that a queue occurs on the northbound and westbound legs during morning peak hour.

4.2.3 EXISTING TRAFFIC CONDITIONS

Traffic count data collected in March 2013 during the morning (7:30–9:30 a.m.) and evening (3:30–5:30 p.m.) peak periods were obtained from Boston University Medical Center *Institutional Master Plan (IMP) Amendment* for the intersections of Massachusetts Avenue/Albany Street and Massachusetts Avenue/Harrison Avenue.
The remaining traffic counts were conducted on August 6, 2013 during the morning (7:30–9:30 a.m.) and evening (4:00–6:00 p.m.) peak periods.

Based on this data, the peak hours were identified as 7:45–8:45 a.m. and 4:45–5:45 p.m. **Figure 4-2** and **Figure 4-3** show the existing peak-hour turning movement volumes for the a.m. and p.m. peak hours, respectively.

The traffic volumes were balanced to remove discrepancies between intersections and no seasonal adjustment was necessary to account for traffic data collected in March and August. Complete traffic count data are provided in Appendix 1.

4.2.4 EXISTING TRAFFIC OPERATIONS

The criterion for evaluating traffic operations is level of service (LOS), which is determined by assessing average delay incurred by vehicles at intersections and along intersection approaches. Trafficware's Synchro (version 6) software package was used to calculate average delay and associated LOS at the study area intersections. This software is based on the traffic operational analysis methodology of the Transportation Research Board's 2000 Highway Capacity Manual (HCM).

The volume-to-capacity (v/c) ratio is a measure of congestion at an intersection approach. A v/c ratio of one or greater indicates that the traffic volume on the intersection approach exceeds capacity.

The 50th percentile queue length, measured in feet, represents the average extent of the vehicle queue (to the last stopped vehicle) upstream from the stop line during 50 percent of all signal cycles. The 50th percentile queue will be seen during most cycles. The queue would be this long about 50 percent of the time and would typically occur during off-peak hours.

The 95th percentile queue length, measured in feet, represents the farthest extent of the vehicle queue (to the last stopped vehicle) upstream from the stop line during 5 percent of all signal cycles. The 95th percentile queue will not be seen during each cycle. The queue would be this long only 5 percent of the time and would typically not occur during off-peak hours.

Field observations were performed by HSH to collect intersection geometry such as number of turning lanes, lane length, and lane width. Signal timing and phasing used in this analysis were obtained from the BTD and confirmed through the field observations conducted by HSH.

LOS designations are based on average delay per vehicle for all vehicles entering an intersection. **Table 4-1** displays the intersection level of service criteria. LOS A

indicates the most favorable condition, with minimum traffic delay, while LOS F represents the worst condition, with significant traffic delay. LOS D or better is typically considered acceptable in an urban area. However, LOS E or F is often typical for a stop controlled minor street that intersects a major roadway.

Table 4-1	Level of Service	Criteria	(HCM	Except)
-----------	------------------	----------	------	---------

Level of	Average Stopped Delay (sec./veh.)		
Service	Signalized Intersection	Unsignalized Intersection	
А	10	10	
В	>10 and 20	>10 and 15	
С	>20 and 35	>15 and 25	
D	>35 and 55	>25 and 35	
E	>55 and 80	>35 and 50	
F	>80	>50	

Source: 2000 Highway Capacity Manual, Transportation Research Board.

Table 4-2 and **Table 4-3** present the 2013 Existing conditions operational analysis for the study area intersections during the a.m. and p.m. peak hours, respectively. The detailed analysis is provided in Appendix 1, Transportation.

During the a.m. peak hour, the signalized intersections operate at LOS D or better. However, some movements at the three signalized intersections operate at LOS E or F. All movements at the unsignalized intersections operate at a LOS D or better.

During the p.m. peak hour, the signalized intersections operate at LOS D or better, with some movements operating at LOS E. The Albany Street and Harrison westbound movements at Massachusetts Avenue currently operate at LOS E and F, respectively. All movements at the unsignalized intersections operate at a LOS D or better, except Harrison westbound movement at Harrison Avenue/Northampton Street.

		Dalari	NIC	50th Percentile Queue	95th Percentile Queue
Intersection/Approach	105	(seconds)	V/C Ratio	(feet)	(feet)
Cignaliza		sections	Katio	(leet)	(ieet)
Massachusetts Ave/Albany St	C	32.8	_	-	-
Albany EB left/thru thru		43.3	0.68	136	208
Albany EB right	D	36.6	0.24	34	m69
Albany WB left	F	>80.0	0.81	111	#202
Albany WB thru thru/right	С	24.2	0.32	93	131
Mass Ave NB thru thru	D	35.5	0.75	366	453
Mass Ave NB right	С	20.4	0.49	200	293
Mass Ave SB left	E	70.8	0.61	78	129
Mass Ave SB thru thru/right	В	18.1	0.44	181	232
Massachusetts Ave/Harrison Ave		33.5	-	-	-
Harrison EB left/thru/right		71.5	0.98	279	#475
Harrison WB left/thru/right		64.6	0.92	191	#343
Mass Ave NB left		9.6	0.21	16	26
Mass Ave NB thru thru/right	C	25.2	0.79	298	390
Mass Ave SB left	В	12.2	0.36	24	45
Mass Ave SB thru thru/right		17.6	0.54	189	254
Albany St/Northampton St/Crosstown Dr		23.8	-	-	-
Albany EB left/thru thru/right	В	11.9	0.49	85	253
Albany WB left/thru thru/right	C	24.0	0.25	93	145
Crosstown NB left/thru	D	46.1	0.45	92	113
Crosstown NB right	В	10.9	0.18	0	7
Northampton SB left/thru/right	D	54.4	0.74	131	118
Unsignal	ized Inte	ersections	1		1
Harrison Ave/Northampton St	-	-	-	-	-
Harrison EB left/thru/right	C	23.6	0.75	-	-
Harrison WB left/thru/right	C	17.7	0.62	-	-
Northampton NB left/thru/right	C	16.1	0.54	-	-
Northampton St/Garage	-	-	-	-	-
		15.3	0.07	-	6
Garage WB right	В	10.8	0.01	-	
Northampton INB thru/right	A	0.0	0.24	-	
Northampton SB left/thru		3.0	0.06		5

Table 4-2Existing (2013) Level of Service Summary, a.m. Peak Hour

 $\frac{1}{2} - \frac{1}{2} = 50^{\text{th}}/95^{\text{th}} \text{ percentile volume exceeds capacity. Queue maybe longer. Queue shown is the maximum after 2 cycles.}$

m = Volume for 95^{th} percentile queue is metered by an upstream signal.

Grey shading indicates undesirable LOS.

	1				
Intersection/Approach	105	Delay	V/C Patio	50th Percentile Queue length (feet)	95th Percentile Queue length (feet)
Signaliz	od Inter	sections	κατισ	(ieet)	(ieel)
Massachusetts Ave/Albany St		31.0	_	_	_
Albany FB left/thru thru	D	43.3	0.50	95	m117
Albany EB right	D	44.9	0.49	100	m141
Albany WB left	E	65.1	0.71	183	206
Albany WB thru thru/right	А	8.4	0.40	54	65
Mass Ave NB thru thru	D	37.8	0.63	273	358
Mass Ave NB right	В	15.8	0.28	99	151
Mass Ave SB left	E	55.6	0.29	32	67
Mass Ave SB thru thru/right	С	28.1	0.64	314	411
Massachusetts Ave/Harrison Ave		44.9	-	-	-
Harrison EB left/thru/right	D	40.2	0.73	165	#279
Harrison WB left/thru/right	F	>80.0	>1.00	~ 386	#587
Mass Ave NB left		13.1	0.39	26	44
Mass Ave NB thru thru/right	В	18.6	0.55	181	239
Mass Ave SB left	А	10.0	0.20	17	32
Mass Ave SB thru thru/right		19.8	0.63	245	316
Albany St/Northampton St/Crosstown Dr		28.9	-	-	-
Albany EB left/thru thru/right	В	14.1	0.39	55	146
Albany WB left/thru thru/right	C	28.3	0.38	152	282
Crosstown NB left/thru	D	39.2	0.38	79	99
Crosstown NB right	А	6.6	0.27	0	33
Northampton SB left/thru/right	D	51.6	0.83	187	90
Unsignali	ized Inte	ersections	_		
Harrison Ave/Northampton St	-	-	-	-	-
Harrison EB left/thru/right	В	14.4	0.49	-	-
Harrison WB left/thru/right	E	40.5	0.91	-	-
Northampton NB left/thru/right	C	16.4	0.54	-	-
Northampton St/Garage	-	-	-	-	-
Garage WB left	B	14.5	0.16	-	14
Garage WB right	B	10.9	0.11	-	9
Northampton NB thru/right	A	0.0	0.15	-	0
Northampton SB left/thru	A	0.8	0.02	-	1

Table 4-3	Existing (2013) Level of S	ervice Summary, p.m. Peak Hour
	0	

 \sim /# = 50th/95th percentile volume exceeds capacity. Queue maybe longer. Queue shown is the maximum after 2 cycles.

 $m\,=\,Volume$ for 95^{th} percentile queue is metered by an upstream signal.

Grey shading indicates undesirable LOS.

4.2.5 EXISTING PARKING

Off-Street Parking

Howard/Stein-Hudson (HSH) conducted a detailed assessment of the existing 539space parking garage at 35 Northampton Street in June 2011 (see Appendix 1) and August 2013.

The 3-level garage is owned and operated by the Boston Public Health Commission (BPHC) as a public garage and primarily serves the abutting buildings, including the McCormack Residential Towers (35 Northampton Street and 860 Harrison Avenue); the Carter Auditorium on Northampton Street; the South End Fitness Center on Northampton Street; the Miranda Creamer Building on Albany Street; and 721-729 Massachusetts Avenue (Boston Medical Center (BMC)). Under an existing lease, BMC is entitled to use up to 250 spaces at market rates for employees and visitors. In addition, the garage is open for public transient and monthly parking, where available. Vehicular access to the garage is provided at Level 2, on Northampton Street with one gate-controlled entrance driveway and two gate-controlled exit driveways.

According to parking demand observations conducted by HSH in June 2011, the existing garage reaches a peak average occupancy of only approximately 80% (100 unused spaces) during the weekday peak periods and is typically less than 30% occupied during the weekday evening and throughout the day on Saturday and Sunday. Additional observations made by HSH in August 2013 showed peak midday occupancy of the garage at 394 spaces (or 73% occupancy at 1:00 p.m.) and overnight demand at 155 spaces (or 29% at 11:00 p.m.) – indicating that parking demand has not substantially changed since the 2011 observations. The existing hourly parking demand at the 35 Northampton Street garage is illustrated in **Figure 4-4**.

As shown in **Figure 4-4**, the garage reaches its peak occupancy at about 2:00 p.m. with 439 vehicles parked (approximately 81% occupied) – 100 vehicles fewer than the striped capacity of 539 spaces. Overnight parking demand was approximately 140 to 170 vehicles, primarily attributed to the residential users at 35 Northampton and 860 Harrison Avenue, as well as night shift personnel at BMC.

According to data provided by BPHC in 2011, the parking demand ratio for the residents of 35 Northampton and 860 Harrison Avenue was approximately 0.30 spaces per occupied unit (103 cards/(234+112 units) = 0.30). As of August 2013, residential parking demand at 35 Northampton and 860 Harrison Avenue has remained generally consistent at approximately 0.34 spaces per unit (118 cards/(234+112 units) = 0.34).

There are three off-site public parking locations adjacent to the Project (**see Figure 4-5**): Stanhope Garage (12 Northampton Street), Stanhope Garage (53 Northampton Street), and Crosstown Garage. The following details the midday and evening parking occupancy at these locations based on data collected by HSH on Thursday August 22, 2013 at the two Stanhope locations and data provided by the Crosstown Garage for Tuesday, August 20, 2013:

- The Stanhope Garage (12 Northampton Street) is a surface lot with approximately 47 parking spaces. At 1:00 p.m., the lot was 77% occupied. Overnight parking is not permitted at this location.
- The Stanhope Garage (53 Northampton Street) has approximately 39 spaces within a surface lot and garage. At 1:00 p.m., this facility had a demand of approximately 19 vehicles (or 49%). Overnight parking is not permitted at this location.
- The Crosstown Garage is a 1,250 parking space garage. At 1:00 p.m., it was approximately 53% occupied and at 11:00 p.m., it was only 7% occupied.

On-Street Parking

Figure 4-6 illustrates the on-street parking regulations near the study area. As shown in **Figure 4-7**, curb use regulations adjacent to the Project site include unrestricted parking, no parking, and restricted for Boston EMS or the Funeral Director. Parking is prohibited along Albany Street and Massachusetts Avenue adjacent to the site. Parking on Northampton Street and Harrison Avenue consists of a mix of no parking, unrestricted, and metered parking.

4.2.6 EXISTING PUBLIC TRANSPORTATION

The Project site is well served by public transportation as shown in **Figure 4-8** and summarized in **Table 4-4**.

RAPID TRANSIT ROUTES

In July 2002, Boston's first Bus Rapid Transit service, the "Silver Line", opened along Washington Street between Dudley Square and Downtown Crossing. In the fall of 2009, the route was extended and now runs between Dudley Square, Downtown Crossing, and South Station. A transit priority lane is provided in each direction between Melnea Cass Boulevard and the Massachusetts Turnpike along Washington Street (the lane is shared with general traffic turning right). The Silver Line replaces the existing Route #49 bus, which previously operated on Washington Street, and operates at 8-10 minute headways during peak periods. The Silver Line stop closest to the site is on Washington Street at Massachusetts Avenue, approximately a five-minute (one-quarter mile) walk, or two blocks from the intersection of Harrison Avenue and Northampton Street.

Bus Route	Origin-Destination	Peak Hour Headway (min)*			
	Rapid Transit Routes				
Silver Line SL4	Dudley Station–South Station at Essex Street via Washington Street	10			
Silver Line SL5	Dudley Station–Downtown Crossing at Temple Street via Washington Street	7			
	Local Bus Routes	-			
1	Harvard/Holyoke Gate – Dudley Station via Mass Ave.	8-11			
8	Harbor Point/UMass – Kenmore Station	15-20			
10	City Point – Copley Square	20			
47	Central Square Cambridge – Broadway Station via BU Medical Center	8-10			
170	Central Square, Waltham – Dudley Square via Back Bay	60			
171	Dudley Station – Logan Airport via Andrew Station	30			
Regional Circumferential Bus Routes					
CT1	Cross Town Transit – Central Square Cambridge – BU Medical Center/Boston Medical Center via M.I.T	20			
CT3	Beth Israel Deaconess Hospital – Andrew Station	20			
MASCO	Crosstown				

Source: www.mbta.com

* Headway is the scheduled time between trains or buses, as applicable.

MBTA BUS ROUTES

Located within a 5-10 minute walk of the project site are several bus stations with shelters on Washington Street, Massachusetts Avenue, Harrison Avenue, and Albany Street. The Silver Line bus rapid transit service via Washington Street provides service to and from Dudley Square, Downtown Boston, and South Station. Local bus routes provide connections to MBTA subway stations, such as the Red Line (Broadway, Andrew, and JFK/UMass) and the Orange Line (Massachusetts Avenue, Back Bay, and Ruggles).

MBTA COMMUTER RAIL SERVICE

The closest commuter rail station to the project area is found at Newmarket Square. The MBTA is in the process of upgrading the Fairmount commuter rail line, which runs from Readville in Hyde Park into South Station, with a new stop completed at Newmarket Square on July 1, 2013. The Newmarket Station is located at Massachusetts Avenue and Newmarket Square.

MASCO

Medical Academic and Scientific Community Organization (MASCO) is a non-profit organization dedicated to enhancing Boston's Longwood Medical and Academic (LMA) area for the benefit of those who live, work, study or receive care in the area. There are eight MASCO routes.

The closest MASCO bus service is the Crosstown route located at 7-17 Melnea Cass Boulevard, a block away from the Project site. This service provides connection to several locations in the Longwood Medical Area, including Ruggles Station, Wentworth lots, Brigham Circle, Brigham and Women Hospital Shapiro, 440 Brookline Avenue, 435 Brookline Avenue, Beth Israel Deaconess Medical Center (BIDMC) East Shapiro, BIDMC East Campus, Coop MBTA and Vanderbilt Hall. The stop locations vary between the a.m. and p.m. service with buses departing approximately every 7-12 minutes.

4.2.7 EXISTING PEDESTRIAN CONDITIONS

Pedestrian counts were conducted at Massachusetts Avenue/Albany Street and Massachusetts Avenue/Harrison Avenue in March 2013 and at Northampton Street/Harrison Avenue, Northampton Street/Garage Driveway, and Northampton Street/Albany Street/Crosstown Drive on August 6, 2013. **Figure 4-9** illustrates the a.m. and p.m. peak hour pedestrian volumes. Detailed pedestrian count data is provided in Appendix 1.

The local roadways near the project site provide good pedestrian access for the light pedestrian activity along Northampton Street and the moderate level along Massachusetts Avenue. There is also a direct pedestrian connection from Levels 2 and 3 of the garage to the Boston Area Health Education Center (BAHEC) and Boston Emergency Medical Services in the Miranda Creamer building.

4.2.8 EXISTING BICYCLE CONDITIONS

Albany Street, Massachusetts Avenue, and Harrison Avenue are generally considered on-street bicycle routes in this area. In recent months, the City of Boston has created marked bike lanes and marked shared-travel bike lanes (where space does not allow an exclusive bike lane) on Massachusetts Avenue between Albany Street and St. Botolph Street as part of a major improvement project. The Southwest Corridor bike path can be reached via Massachusetts Avenue or Melnea Cass Boulevard. **Figure 4-10** summarizes existing a.m. and p.m. peak hour bicycle volumes; bicycle volumes are low in the vicinity of the site. Detailed bicycle count data is provided in Appendix 1.

Hubway, a bicycle sharing system in Metro Boston launched in July 2011, now has more than 100 stations with 1,000 bicycles available throughout Boston, Brookline, Cambridge, and Somerville. Hubway bicycles are available during the spring, summer, and fall seasons (the system is closed during the winter). There are two Hubway Stations within close walking distance to the Project site (see **Figure 4-11**). There is one Hubway station at Boston Medical Center FGH Building at 820 Harrison Avenue and one at the corner of Washington Street and Lenox Street. Each station accommodates between 15 and 20 bicycle docks.

4.2.9 CAR SHARING

Car sharing, predominantly provided by Zipcar in the Boston area, supplies easy short-term access to vehicular transportation for those who do not own cars. Vehicles are rented on an hourly or daily basis with all vehicle costs (gas, maintenance, insurance, and parking) included in the rental fee. Vehicles are checked out for a specific time period and returned to their designated location. Approximately 27 Zipcars are located at six locations within one-quarter mile of the Project site. Zipcar shared car locations are shown in **Figure 4-11**.

4.2.10 LOADING AND SERVICE

A centralized loading and service area serve the Northampton Square Campus with access provided via Albany Street. A secondary trash storage area/compactor is provided within the surface parking lot off Northampton Street. As part of the renovation work associated with 35 Northampton Street, the surface parking lot would be removed to allow for the construction of the new entrance lobby and corridor serving 35 Northampton and 860 Harrison Avenue and the trash compactor would be relocated to the primary loading area off Albany Street.

4.3 FUTURE CONDITIONS

For transportation impact analyses, it is standard practice to evaluate two future conditions: No-Build conditions (without the proposed Project) and Build conditions (with the proposed Project). In accordance with BTD guidelines, these conditions are projected to a future date five years from the existing conditions year. For this evaluation of this Project, 2018 was selected as the horizon year for the future conditions analyses.

This section presents a description of the 2018 future conditions scenarios and includes an evaluation of the transportation facilities under the No-Build and Build conditions.

4.3.1 NO-BUILD CONDITIONS

The No-Build conditions reflect a future scenario that incorporates any anticipated traffic volume changes independent of the Project and any planned infrastructure improvements that will affect travel patterns throughout the study area. Infrastructure improvements include roadway, public transportation, pedestrian and bicycle improvements. Traffic volume changes are based on two factors: an annual growth rate and growth associated with specific developments near the Project.

4.3.2 BACKGROUND GROWTH

A background growth factor of 1% per year was selected for the Project, consistent with BTD approved rates for current development projects in the area. All existing traffic volumes were then increased by 1% per year for a period of 5 years.

4.3.3 PLANNED DEVELOPMENT

To provide a conservative analysis, the no-build scenario also adds traffic contributions from specific projects approved and/or under construction. The following projects, which are depicted in **Figure 4-12**, are located near the study area and, where appropriate, traffic volumes associated with these projects were also incorporated into the future conditions traffic volumes. Traffic volumes from the following projects were specifically traced through the study area traffic network:

- BioSquare Building E The proposed project includes 160,000 square feet (sf) of research and development space. Although its traffic has been added to the No- Build network, it is not anticipated that this project will be built within the 5-year horizon.
- BioSquare Building G The proposed project includes 215,000 sf of research and development space (approved, not constructed). Although its traffic has been added to the No-Build network, it is not anticipated that this project will be built within the 5-year horizon.
- NEIDL Building The proposed project includes 250 additional employees (built, not fully occupied).
- Parcel 9 The proposed project includes construction of a new five-story building with 9,095 sf of retail, 55 residential units, and 145 hotel rooms.
- Parcel 10 The proposed project includes a redevelopment of a mixed-use building into a new 40,000 sf grocery store (for Tropical Foods); construction of a new approximately 64,100 sf mixed-use building (14,600 sf of retail, 11,160 sf of office, and 36 residential units); and renovation of the existing Tropical Foods building into approximately 11,000 sf of retail space and 30 residential units.
- 2-14 Taber Street The proposed project includes constructing a new threestory building with 23,559 sf of office and retail. Phase 1 will construct 7,853 sf of retail space on the ground floor and Phase 2 will consist of construction of the second and third floors with 15,706 sf of office space.

4.3.4 PLANNED INFRASTRUCTURE IMPROVEMENTS

In addition, the following infrastructure improvements were taken into account in developing the No-Build network:

- Massachusetts Avenue Traffic Signal Optimization. Currently Massachusetts Avenue traffic signals are still being optimized and are at the end of the improvement contract, although no completion time has been determined.
- MBTA Indigo Line. The MBTA is improving the Fairmount Branch of the commuter rail that runs from South Station to Readville in Hyde Park, calling it the "Indigo Line." Construction of Phase 1 of the "Indigo Line" is complete. This will rebuild Uphams Corner and Morton St stations so they are ADA compliant, with high-level platforms, and better shelter from the elements. Phase 2 will construct new stations along the route at Newmarket, Five Corners, Talbot Ave, and Blue Hill Ave. The MBTA service to the new Newmarket Station began on July 1, 2013. No increased transit mode share was estimated as a result of this new service in the interest of a conservative analysis.
- City of Boston Melnea Cass Boulevard Improvement Project. The Boston Transportation Department is working with the Roxbury community to redesign Melnea Cass Boulevard with the goal of making it a neighborhood friendly corridor. The scope includes the development of roadway and streetscape designs that create a pedestrian friendly environment, ensure efficient traffic flow, accommodate transit vehicles and bicycles and promote economic development. The redesign plans will include dedicated bus lanes that can accommodate existing transit and future BRT service. As a final design has not yet been adopted, traffic analyses reflect current geometry and signal timing.
- Southbound Frontage Road Connection. The BioSquare Phase II project permitting included a connection from BioSquare Drive to the Frontage Road Southbound, which was approved.

4.3.5 NO-BUILD CONDITIONS TRAFFIC VOLUMES

To develop the 2018 No-Build conditions traffic volumes at the study area intersections, the 1% per year annual growth rate was applied to the 2013 Existing conditions traffic volumes, then the traffic volumes associated with the background development projects listed above were added.

The 2018 No-Build a.m. and p.m. peak hour traffic volumes are shown in **Figure 4-13** and **Figure 4-14**, respectively.

4.3.6 NO-BUILD CONDITIONS TRAFFIC OPERATIONS

The 2018 No-Build conditions scenario analysis uses the same methodology as the 2013 Existing conditions scenario analysis. **Table 4-5** and **Table 4-6** present the 2018 No-Build conditions operations analysis for the a.m. and p.m. peak hours, respectively. The shaded cells in the tables indicate a worsening in LOS between the

2013 Existing conditions and the 2018 No-Build conditions. The detailed analysis is provided in the Appendix 1, Transportation.

As shown in **Table 4-5**, all intersections will continue to operate at the same level of service during the morning peak hour with the exception of Massachusetts Avenue southbound left movement at Albany Street, which worsens, from a LOS E to a LOS F.

As shown in **Table 4-6**, all intersections will continue to operate at the same level of service during the evening peak hour with the exception of Albany Street westbound movement at Massachusetts Avenue, which worsens from a LOS E to LOS F.

Massachusetts Avenue traffic signals are still being optimized, although no completion time has been determined.

4.3.7 BUILD CONDITIONS

As previously summarized, the Project includes the following two alternatives:

- **Proposed Project** (Residential Project) consists of the construction of a new residential building with 218-units and the renovation of 860 Harrison Avenue, which will decrease the number of residential units in that building from 103 to 102. Thus, the net increase in residential units created for this Project will be 217 units.
- *Alternative One* (Residential/Office Project) the same as Alternative 1, but replaces 28 residential units on floors 4 through 7 of the proposed tower with approximately 40,000 sf of office space. This alternative would yield a net increase of 189 residential units on the Campus.

Parking for the new units will be accommodated within the existing garage, with additional parking available at other public parking garages in the area including the Crosstown Garage, if needed.

The 2018 Build conditions reflect a future scenario that adds anticipated Projectgenerated trips under each alternative to the 2018 No-Build conditions traffic volumes.

4.3.8 SITE ACCESS AND CIRCULATION

Vehicular access and egress will remain the same with a full access garage driveway along Northampton Street. Pedestrian access for the renovated 860 Harrison Avenue building will remain the same off Harrison Avenue. The proposed new tower will have the residential entry at the corner of Northampton Street and Albany Street. The proposed site access plan is illustrated in **Figure 4-15**.

				50th Percentile	95th Percentile
				Queue	Queue
Interrection/Approach	1.05	Delay	V/C Datio	length	length
Intersection/Approach Signaliz	LUS ad Inter	(seconds)	KallO	(leet)	(leel)
Massachusetts Ave/Albany St		42.6	_	_	_
Albany FB left/thru thru		44.1	0.73	145	204
Albany EB right	D	35.1	0.21	30	m65
Albany WB left	F	>80.0	0.47	135	#278
Albany WB thru thru/right	С	24.3	0.32	95	133
Mass Ave NB thru thru	D	37.9	0.80	405	498
Mass Ave NB right	С	31.5	0.77	393	571
Mass Ave SB left	F	>80.0	>1.00	~150	#295
Mass Ave SB thru thru/right	В	19.0	0.49	212	268
Massachusetts Ave/Harrison Ave		34.8	-	-	-
Harrison EB left/thru/right		69.8	0.97	294	#503
Harrison WB left/thru/right		67.5	0.93	195	#370
Mass Ave NB left		9.7	0.20	13	28
Mass Ave NB thru thru/right	С	28.3	0.85	341	443
Mass Ave SB left	C	22.7	0.61	37	#88
Mass Ave SB thru thru/right		19.1	0.62	233	312
Albany St/Northampton St/Crosstown Dr		21.5	-	-	-
Albany EB left/thru thru/right	В	10.6	0.52	82	268
Albany WB left/thru thru/right	C	23.8	0.26	122	186
Crosstown NB left/thru	D	48.1	0.40	72	117
Crosstown NB right	В	13.9	0.14	0	27
Northampton SB left/thru/right	D	53.2	0.70	102	166
Unsignali	zed Inte	ersections		1	
Harrison Ave/Northampton St	-	-	-	-	-
Harrison EB left/thru/right	C	24.5	0.77	-	-
Harrison WB left/thru/right	C	17.9	0.63	-	-
Northampton NB left/thru/right	C	15.7	0.52	-	-
Northampton St/Garage	-	-	-	-	-
	B	14.5	0.05	-	4
	L A	10.8	0.01	-	
Northampton INB thru/right	A	0.0	0.23	-	
Northampton SB left/thru	A	2.8	0.05	-	4

Table 4-5No-Build (2018) Level of Service Summary, a.m. Peak Ho

 $\frac{1}{2.8} \quad 0.05 \quad -\frac{1}{2.8} \quad 0.05 \quad -\frac{1}$

 $m\,=\,Volume$ for 95^{th} percentile queue is metered by an upstream signal.

Grey shading indicates worsening from Existing LOS.

50th 95th	
Percentile Percer Queue Queue	ntile e
Intersection/Approach	
Signalized Intersections	
Massachusetts Ave/Albany St D 36.5	
Albany EB left/thru thru D 43.5 0.49 91 m12	25
Albany EB right D 44.5 0.47 95 m14	43
Albany WB left F > 80.0 0.89 236 #42	9
Albany WB thru thru/right B 10.7 0.47 95 103	3
Mass Ave NB thru thru D 42.0 0.72 305 383	3
Mass Ave NB right B 16.8 0.35 130 196	6
Mass Ave SB left E 60.4 0.43 49 97	,
Mass Ave SB thru thru/right C 32.1 0.71 359 444	4
Massachusetts Ave/Harrison AveE57.2	
Harrison EB left/thru/right D 41.1 0.74 171 #29	8
Harrison WB left/thru/right F >80.0 >1.00 ~482 #69	3
Mass Ave NB left B 13.3 0.39 25 46)
Mass Ave NB thru thru/right C 20.6 0.64 229 298	8
Mass Ave SB left B 11.0 0.27 19 38	6
Mass Ave SB thru thru/right C 20.5 0.66 265 341	1
Albany St/Northampton St/Crosstown DrC27.3	
Albany EB left/thru thru/rightB12.80.3649156	6
Albany WB left/thru thru/rightC27.70.39149345	5
Crosstown NB left/thru D 38.9 0.32 65 101	1
Crosstown NB right A 7.2 0.27 0 41	
Northampton SB left/thru/rightD50.10.83170245	5
Unsignalized Intersections	
Harrison Ave/Northampton St	
Harrison EB left/thru/right C 15.7 0.54 -	
Harrison VVB left/thru/right $F > 50.0 0.98 -$	
Northampton NB left/thru/right C 16.4 0.53	
Northampton St/Garage - - - - Carage W/B left B 12.0 0.12 11	
Galage WD left D 15.9 0.15 - 11 Carage WB right B 10.0 0.10 9	
Statage workgin D 10.9 0.10 - 0 Northampton NB thru/right A 0.0 0.15 0	
Northampton SB left/thru A 0.4 0.01 - 1	

Table 4-6No-Build (2018) Level of Service Summary, p.m. Peak Hour

 $\frac{1}{2} - \frac{1}{2} = 50^{\text{th}}/95^{\text{th}} \text{ percentile volume exceeds capacity. Queue maybe longer. Queue shown is the maximum after 2 cycles.}$

m = Volume for 95^{th} percentile queue is metered by an upstream signal.

Grey shading indicates worsening from Existing LOS.

4.3.9 TRIP GENERATION

Trip generation is a complex, multi-step process that produces an estimate of vehicle trips, transit trips, walk trips, and bicycle trips associated with a proposed project and a specific land use program. A project's location and proximity to different modes determines how people will travel to and from that project site.

To estimate the number of trips expected to be generated by the Project, data published by the Institute of Transportation Engineers (ITE) in the *Trip Generation Manual*, 9th Edition were used. ITE provides data to estimate the total number of unadjusted vehicular trips associated with the Project. In an urban setting well served by transit, adjustments are necessary to account for vehicle occupancy and other travel modes such as walking, bicycling, and transit.

Trip generation estimates for the Project were derived using the following Land Use Codes (LUC):

LUC 220 – Apartment. The apartment land use can be a rental dwelling unit located within the same building with at least three other dwelling units. The fitted curve equations were used to estimate person trips associated with the apartment use.

LUC 710 – General Office Building. A general office building houses multiple tenants. It is a location where affairs of businesses, commercial or industrial organizations or professional persons or firms are conducted.

4.3.10 MODE SPLIT

The BTD publishes vehicle, transit, and walking mode split rates for different areas of Boston. The Project is located within designated Area 15. The unadjusted vehicular trips were converted to person trips by using vehicle occupancy rates published by the Federal Highway Administration (FHWA). The BTD's travel mode share data for Area 15 are shown in **Table 4-7**.

4.3.11 VEHICLE TRIP GENERATION

The trip generation process described above yields the adjusted vehicle trips associated with the Project under each Build alternative, are summarized in **Table 4-8**. Detailed trip generation information is provided in the Appendix 1.

Land Use	Period/ Direction	Vehicle Trips	Transit Trips	Bike/Walk/Other Trips
		Daily		
Pasidontial	In	57%	17%	26%
Residential	Out	57%	17%	26%
04	In	58%	24%	18%
Office	Out	58%	24%	18%
a.m. Peak Hour				
Pasidantial	In	54%	19%	27%
Residential	Out	44%	29%	27%
Office	In	55%	27%	18%
Once	Out	43%	40%	17%
p.m. Peak Hour				
Pasidantial	In	44%	29%	27%
Residential	Out	54%	19%	27%
Office	ln	43%	40%	17%
Unice	Out	55%	27%	18%

Table 4-7BTD Area 15 Mode Shares

Source: Boston Transportation Department mode share data for Area 15 for residential and office.

Table 4-8Vehicle Trip Generation Summary

Period/ Direction	Proposed Project Vehicle Trips ¹	Alternative One Vehicle Trips ²		
	Daily			
Total	828	978		
In	414	489		
Out	414	489		
a.m. Peak Hour				
Total	51	78		
In	12	40		
Out	39	38		
p.m. Peak Hour				
Total	65	88		
In	39	39		
Out	26	49		

Source: 1 Based on ITE LUC- 220, Apartment averages rates for 218 units.

2 Based on ITE LUC- 220, Apartment averages rates for 190 units and LUC- 710, General Office Building averages rates for 40,000 sf.

As shown in **Table 4-8**, the Proposed Project is expected to generate only approximately 51 vehicle trips during the morning peak hour (12 in and 39 out) and 65 vehicle trips during the evening peak hour (39 in and 26 out). Alternative One is expected to generate only approximately 78 vehicle trips during the morning peak hour (40 in and 38 out) and 88 vehicle trips during the evening peak hour (39 in and 49 out). This corresponds to an increase of approximately one to two new vehicle trips per minute on the adjacent roadway network during the peak periods under either alternative – a negligible increase.

4.3.12 TRIP DISTRIBUTION

The trip distribution identifies the various travel paths for vehicles arriving and leaving the Project Site. Trip distribution patterns for the Project were based on BTD's origindestination data for Area 15. The trip distribution patterns were refined based on existing traffic patterns and review of the adjacent roadway network. The trip distribution pattern for the Project is illustrated in **Figure 4-16**.

The Project-generated vehicle trips were assigned to the study area roadway network based on the trip distribution patterns. The Project-generated trips for each Build alternative were added to the 2018 No-Build conditions traffic volumes to develop the 2018 Build conditions peak hour traffic volume networks. The resulting a.m. and p.m. peak hour traffic volume networks for the Proposed Project and Alternative One are shown in **Figures 4-17** through **Figure 4-20** for the a.m. and p.m. peak hours, respectively.

4.3.13 BUILD CONDITIONS TRAFFIC OPERATIONS

The 2018 Build conditions scenario analyses uses the same methodology as the 2013 Existing and 2018 No-Build conditions scenario analyses. The results of the 2018 Build conditions traffic analysis, for each Build Alternative, at study area intersections are presented in **Tables 4-9** through **Table 4-12** for the a.m. and p.m. peak hours, respectively. The shaded cells in the tables indicate a decrease in LOS between the 2018 No-Build conditions and the 2018 Build conditions. The detailed analysis sheets are provided in the Appendix 1.

As shown in Table 4-9 and Table 4-12, all intersections will continue to operate at the same level of service, under either Build Alternative, during the morning and evening peak hour, due to the small increase in vehicle trips generated by the Project.

				50th Percentile Queue	95th Percentile Queue
		Delay	V/C	length	length
Intersection/Approach	LOS	(seconds)	Ratio	(feet)	(feet)
Signaliz	ed Inter	sections			
Massachusetts Ave/Albany St	D	42.6	-	-	-
Albany EB left/thru thru	D	44.0	0.73	146	206
Albany EB right	D	36.2	0.28	42	m82
Albany WB left	F	>80.0	0.97	135	#278
Albany WB thru thru/right	C	24.3	0.32	95	133
Mass Ave NB thru thru	D	37.9	0.80	406	500
Mass Ave NB right	C	31.4	0.77	393	571
Mass Ave SB left	F	>80.0	>1.00	~150	#295
Mass Ave SB thru thru/right	В	19.0	0.49	212	268
Massachusetts Ave/Harrison Ave	D	35.8	-	-	-
Harrison EB left/thru/right	E	76.2	1.00	301	#516
Harrison WB left/thru/right	E	67.5	0.93	194	#369
Mass Ave NB left	A	9.8	0.20	13	29
Mass Ave NB thru thru/right	C	28.3	0.85	341	443
Mass Ave SB left	C	22.7	0.61	37	#88
Mass Ave SB thru thru/right	В	19.2	0.62	234	312
Albany St/Northampton St/Crosstown Dr	C	21.0	-	-	-
Albany EB left/thru thru/right	В	10.6	0.52	82	268
Albany WB left/thru thru/right	С	21.7	0.27	105	174
Crosstown NB left/thru	D	48.1	0.40	72	117
Crosstown NB right	В	13.9	0.14	0	27
Northampton SB left/thru/right	D	53.2	0.70	102	166
Unsignal	ized Inte	ersections	1		1
Harrison Ave/Northampton St	-	-	-	-	-
Harrison EB left/thru/right	D	26.7	0.79	-	-
Harrison WB left/thru/right	C	18.9	0.64	-	-
Northampton NB left/thru/right	C	17.1	0.57	-	-
Northampton St/Garage	-	-	-	-	-
Garage WB left	C	15.4	0.10	-	8
Garage WB right	В	11.0	0.05	-	4
Northampton NB thru/right	A	0	0.24	-	0
Northampton SB left/thru	A	3.1	0.06	-	5

Table 4-9	Proposed Project Build (2018) Level of Service Summary, a.m. Peak Hour
	Toposeu Toject Dunu (2010) Level of Service Summary, a.m. Feak Hou

 $\sim/\# = 50^{\text{th}}/95^{\text{th}}$ percentile volume exceeds capacity. Queue maybe longer. Queue shown is the maximum after 2 cycles.

m = Volume for 95^{th} percentile queue is metered by an upstream signal.

Intersection/Approach	106	Delay (seconds)	V/C Patio	50th Percentile Queue length (foot)	95th Percentile Queue length (foot)
Intersection/Approach Signalize	LUS ad Inter	(seconds)	Kallo	(leet)	(leel)
Massachusetts Ave/Albany St	D	36.6	_	_	_
Albany EB left/thru thru	D	43.4	0 49	91	m125
Albany EB right	D	45.7	0.51	103	m154
Albany WB left	F	>80.0	0.89	236	#429
Albany WB thru thru/right	В	10.7	0.47	95	103
Mass Ave NB thru thru	D	42.2	0.73	307	386
Mass Ave NB right	В	16.8	0.35	130	196
Mass Ave SB left	Е	60.4	0.43	49	97
Mass Ave SB thru thru/right	С	32.2	0.71	359	444
Massachusetts Ave/Harrison Ave	E	57.3	-	-	-
Harrison EB left/thru/right	D	42.6	0.75	174	#308
Harrison WB left/thru/right	F	>80.0	>1.0	~482	#693
Mass Ave NB left	В	13.7	0.41	26	48
Mass Ave NB thru thru/right	С	20.6	0.64	229	298
Mass Ave SB left	В	11.0	0.27	19	38
Mass Ave SB thru thru/right	С	20.6	0.66	267	343
Albany St/Northampton St/Crosstown Dr	С	27.2	-	-	-
Albany EB left/thru thru/right	В	12.8	0.36	49	156
Albany WB left/thru thru/right	С	27.6	0.40	152	351
Crosstown NB left/thru	D	38.9	0.32	65	101
Crosstown NB right	А	7.2	0.27	0	41
Northampton SB left/thru/right	D	50.1	0.83	170	245
Unsignali	zed Inte	ersections	1	I	1
Harrison Ave/Northampton St	-	-	-	-	-
Harrison EB left/thru/right	C	16.6	0.57	-	-
Harrison WB left/thru/right	F	> 50.0	>1.0	-	-
Northampton NB left/thru/right	C	17.3	0.56	-	-
Northampton St/Garage	-	-	- 0.17	-	- 16
Carago WB right	C P	15.4	0.17	-	10
Northampton NB thru/right	D A		0.12	-	
Northampton SB left/thru	A		0.10	-	2

Table 4-10	Proposed Project Build (2018) Level of Service Summary, p.m. Peak Hou
	Troposed Troject Dunu (2010) Level of Service Summary, p.m. Feak from

 \sim /# = 50th/95th percentile volume exceeds capacity. Queue maybe longer. Queue shown is the maximum after 2 cycles.

m = Volume for 95th percentile queue is metered by an upstream signal.

Intersection/Approach	LOS	Delay (seconds)	V/C Ratio	50th Percentile Queue length (feet)	95th Percentile Queue length (feet)
Signaliz	ed Inter	sections		•	
Massachusetts Ave/Albany St	D	42.6	-	-	-
Albany EB left/thru thru	D	44.1	0.73	146	206
Albany EB right	D	36.2	0.28	41	m81
Albany WB left	F	>80.0	0.97	135	#278
Albany WB thru thru/right	С	24.3	0.32	95	133
Mass Ave NB thru thru	D	38.0	0.81	407	501
Mass Ave NB right	С	31.4	0.77	393	571
Mass Ave SB left	F	>80.0	>1.00	~150	#295
Mass Ave SB thru thru/right	В	19.0	0.49	212	268
Massachusetts Ave/Harrison Ave	D	35.8	-	-	-
Harrison EB left/thru/right	E	76.2	1.00	301	#516
Harrison WB left/thru/right	E	67.5	0.93	194	#369
Mass Ave NB left	А	9.9	0.22	14	30
Mass Ave NB thru thru/right	С	28.3	0.85	341	443
Mass Ave SB left	С	22.7	0.61	37	#88
Mass Ave SB thru thru/right	В	19.3	0.62	235	313
Albany St/Northampton St/Crosstown Dr	C	20.9	-	-	-
Albany EB left/thru thru/right	В	10.7	0.53	82	268
Albany WB left/thru thru/right	С	21.5	0.27	107	177
Crosstown NB left/thru	D	48.1	0.40	72	117
Crosstown NB right	В	13.9	0.14	0	27
Northampton SB left/thru/right	D	53.2	0.70	102	166
Unsignali	ze <mark>d In</mark> te	ersections			1
Harrison Ave/Northampton St	-	-	-	-	-
Harrison EB left/thru/right	D	28.7	0.81	-	-
Harrison WB left/thru/right	C	19.6	0.66	-	-
Northampton NB left/thru/right	C	17.3	0.57	-	-
Northampton St/Garage	-	-	-	-	-
Garage WB left	C	16.5	0.11	-	9
Garage WB right	B	11.1	0.05	-	4
Northampton NB thru/right	A	0.0	0.24	-	0
Northampton SB left/thru	A	3.7	0.08	-	6

Table 4-11 Alternative One Build (2018) Level of Service Summary, a.m. Peak Hour

 \sim /# = 50th/95th percentile volume exceeds capacity. Queue maybe longer. Queue shown is the maximum after 2 cycles.

m = Volume for 95th percentile queue is metered by an upstream signal.

Intersection/Approach	LOS	Delay (seconds)	V/C Ratio	50th Percentile Queue length (feet)	95th Percentile Queue length (feet)
Signaliz	ed Inter	sections			, <i>,</i>
Massachusetts Ave/Albany St	D	36.7	-	-	-
Albany EB left/thru thru	D	43.3	0.49	92	m125
Albany EB right	D	46.9	0.54	112	m162
Albany WB left	F	>80.0	0.89	236	#429
Albany WB thru thru/right	В	10.7	0.47	95	103
Mass Ave NB thru thru	D	42.2	0.73	307	386
Mass Ave NB right	В	16.8	0.35	130	196
Mass Ave SB left	E	60.4	0.43	49	97
Mass Ave SB thru thru/right	C	32.2	0.71	359	444
Massachusetts Ave/Harrison Ave	E	57.3	-	-	-
Harrison EB left/thru/right	D	43.6	0.77	176	#313
Harrison WB left/thru/right	F	>80.0	>1.0	~481	#692
Mass Ave NB left	В	13.7	0.41	26	48
Mass Ave NB thru thru/right	C	20.6	0.64	229	298
Mass Ave SB left	В	11.0	0.27	19	38
Mass Ave SB thru thru/right	С	20.6	0.66	267	343
Albany St/Northampton St/Crosstown Dr	C	27.2	-	-	-
Albany EB left/thru thru/right	В	12.8	0.36	49	156
Albany WB left/thru thru/right	C	27.6	0.40	152	351
Crosstown NB left/thru	D	38.9	0.32	65	101
Crosstown NB right	А	7.2	0.27	0	41
Northampton SB left/thru/right	D	50.1	0.83	170	245
Unsignali	ized Inte	ersections		-	
Harrison Ave/Northampton St	-	-	-	-	-
Harrison EB left/thru/right	C	16.9	0.58	-	-
Harrison WB left/thru/right	F	> 50.0	>1.0	-	-
Northampton NB left/thru/right	C	18.1	0.59	-	-
Northampton St/Garage	-	-	-	-	-
Garage WB left	C	15.8	0.20	-	18
Garage WB right	B	11.3	0.14	-	12
Northampton NB thru/right	A	0.0	0.16	-	0
Northampton SB left/thru	A	1.4	0.03	-	2

Table 4-12Alternative One Build (2018) Level of Service Summary, p.m. Peak Hour

 \sim /# = 50th/95th percentile volume exceeds capacity. Queue maybe longer. Queue shown is the maximum after 2 cycles.

m = Volume for 95th percentile queue is metered by an upstream signal.

4.3.14 PARKING

The detailed parking analyses performed by HSH in June 2011 (see Appendix 1) and August 2013 indicate that the Northampton Garage is currently only approximately 80% occupied (100 unused spaces) during the weekday peak periods and is typically less than 30% occupied (more than 300 unused spaces) during the weekday evening and throughout the day on Saturday and Sunday. As such, there is currently underutilized supply in the existing garage that could be used to serve the Proposed Project. The following details the parking demand under the proposed Build Alternatives:

Proposed Project – (Residential)

The construction of the new residential building and the renovations at 860 Harrison Avenue, for the Proposed Project, will result in a net increase of 217 residential units at the Northampton Square Campus.

The parking demand ratio for the existing residential units on the Northampton Square Campus is currently only approximately 0.30 to 0.34 spaces per occupied unit, which is likely low in comparison to the proposed Project since most of the existing units are efficiency apartments. Although, according to parking survey data collected by HSH throughout the City, parking demand at market rate units is only slightly higher at approximately 0.50 spaces per unit. The Boston Transportation Department (BTD) parking space guidelines for this area of the City allow for a maximum of 1.0 to 1.5 spaces per residential unit.

Assuming a parking demand ratio of 0.5 spaces per residential unit, the parking demand associated with the proposed Project would be easily accommodated within the existing garage without any impact to current users, as the residential demand is typically lowest during the mid-day period when the garage is at its peak and highest (overnight) when the garage is underutilized. Using time of day demand factors, published in the Urban Land Institute's publication *Shared Parking, Second Edition*, the resulting weekday parking demand by hour is illustrated in **Figure 4-21**.

As shown in **Figure 4-21**, the 217 new residential units are expected to add only approximately 78 vehicles during the busiest period of the garage (about 2 p.m.) – leaving approximately 23 unused spaces.

Were the parking demand ever to exceed the anticipated 0.5 spaces per unit for the new residential uses, it is worth noting that the public 1,250-space Crosstown Garage, located just across Albany Street from the site, is significantly underutilized.

Alternative One (Residential/Office)

Under Build Alternative One, the Project would result in a net increase of 189 residential units and 40,000 sf of office space. Assuming a parking demand ratio of 0.5 spaces per residential unit and 1.0 spaces per 1,000 sf of office space, the additional Project-generated parking demand would use the remainder of the existing unused supply within the garage; however, the new parking demand can be adequately accommodated within the garage. BTD guidelines allow a maximum of 0.75 to 1.0 spaces per 1,000 sf of office space. **Figure 4-22** illustrates the resulting residential and office demand by hour.

Similar to the Proposed Project, additional parking demand beyond that anticipated could be accommodated at the nearby Crosstown Garage.

4.3.15 PUBLIC TRANSPORTATION

As summarized in **Table 4-13**, the Propose Project will generate an estimated 296 new transit trips daily, with 36 new transit trips (5 alighting and 31 boarding) during the a.m. peak hour and 42 new trips (31 alighting and 11 boarding) during the p.m. peak hour. Alternative One will generate an estimated 385 new transit trips daily, with 53 new transit trips (22 alighting and 30 boarding) during the a.m. peak hour and 57 new trips (32 alighting and 26 boarding) during the p.m. peak hour.

Period/ Direction	Proposed Project Transit Trips ¹	Alternative One Transit Trips ²					
	Daily						
Total	296	385					
In	148	192					
Out	148	192					
a.m. Peak Hour							
Total	36	53					
In	5	22					
Out	31	30					
	p.m. Peak Hour						
Total	42	57					
In	31	32					
Out	11	26					

Table 4-13 Public Transportation Trip Generation Summary

Source: 1 Trip Generation based on ITE LUC- 220, Apartment averages rates for 218 units.

2 Trip Generation based on ITE LUC- 220, Apartment averages rates for 190 units.

Trip Generation based on ITE LUC- 710, General Office Building averages rates for 40,000 sf.

4.3.16 PEDESTRIAN AND BICYCLE TRIPS

As summarized in **Table 4-14**, the Proposed Project will generate an estimated 452 new pedestrian trips and an additional 296 new transit trips that will require a walk to or from the Site. This results in an additional 748 new pedestrian trips per day. Approximately 36 new pedestrian trips will occur during the a.m. peak hour and 43 new pedestrian trips will occur during the p.m. peak hour. Alternative One will generate an estimated 489 new pedestrian trips and an additional 385 new transit trips that will require a walk to or from the Site. This results in an additional 385 new transit trips that will require a walk to or from the Site. This results in an additional 874 new pedestrian trips per day. Approximately 45 new pedestrian trips will occur during the a.m. peak hour and 57 new pedestrian trips will occur during the p.m. peak hour.

Table 4-14 Pedestrian and Bicycle Trip Generation Summary

Period/ Direction	Proposed Project Walk/Bike Trips ¹	Alternative One Walk/Bike Trips ²				
Daily						
Total	452	489				
In	226	245				
Out	226	245				
a.m. Peak Hour						
Total	36	45				
In	7	18				
Out	29	27				
p.m. Peak Hour						
Total	43	57				
In	28	27				
Out	15	25				

Source: 1 Trip Generation based on ITE LUC- 220, Apartment averages rates for 218 units.

2 Trip Generation based on ITE LUC- 220, Apartment averages rates for 190 units.

Trip Generation based on ITE LUC- 710, General Office Building averages rates for 40,000 sf.

4.3.17 BICYCLE ACCOMMODATIONS

The Project will provide secure covered bicycle storage spaces on-site for the new tower at a minimum ratio of one bicycle parking space per unit, and/or 0.3 bicycle spaces per 1,000 sf of office space, consistent with the City of Boston *Bicycle Parking Guidelines*. This would correspond to a minimum of 238 bicycle spaces for the Proposed Project and 210 bicycle spaces for Alternative One. The Project would also provide an additional 46 secure covered bicycle spaces in the new tower for the Proposed Project, and 62 bicycle spaces in Alternative One, for residents in the renovated 35 Northampton and 860 Harrison buildings.

The Project Proponent is working with the Boston Public Health Commission to *provide* bicycle racks for approximately 60 bicycles in the garage for the renovated 35

Northampton and 860 Harrison buildings. Visitor bicycle racks will be located around the site in accordance with the guidelines.

All bicycle racks, signs, and parking areas will conform to BTD guidelines and be located in safe, secure locations. The Proponent will work with BTD to identify the most appropriate quantity and location for bicycle racks on the Project Site as part of the Transportation Access Plan Agreement (TAPA) process.

4.3.18 LOADING AND SERVICE ACCOMMODATIONS

All loading and service operations will occur on-site at the designated loading dock with two bays below the proposed high-rise building. Access and egress will be provided via the existing site driveway along Albany Street.

All recycling and trash collection for the proposed residential will occur inside the buildings and then wheeled/carried out to a dumpster enclosure located in the loading area. Most residential deliveries are made in smaller vehicles—cars, vans, or small panel trucks. Building management will coordinate all residential move-in and move-out activity and schedule this activity during off-peak hours, when possible. Move-in and move-out activity is generally infrequent once the building is fully occupied.

4.4 TRANSPORTATION MITIGATION MEASURES

Due to the low volume of Project-generated vehicle trips, the LOS at all study area intersections will remain unchanged under the Build Condition alternatives, as summarized for a.m. and p.m. Peak Hour in **Table 4-15** and **Table 4-16**, respectively. As such, mitigation is not warranted beyond providing safe vehicular and pedestrian access to and from the Project site and provision of transportation demand management (TDM) measures in support the City's efforts to reduce dependency on the automobile. The Proponent will work with the BTD as part of the TAPA process to identify appropriate TDM measures.

TDM measures encourage travelers to use alternatives to driving, especially during peak periods and will be facilitated by the nature of the Project and its proximity to public transit. The Proponent will emphasize the site's convenient transit and pedestrian access in marketing the Project to future residents and tenants.

TDM measures for the Project may include but are not limited to the following:

• Orientation Packets: The Proponent will provide orientation packets to new residents and tenants containing information on available transportation choices, including transit routes/schedules and nearby Zipcar locations. On-site

management will work with residents and tenants as they move in to help facilitate transportation for new arrivals.

- Bicycle Accommodation: The Proponent will provide bicycle storage in secure, sheltered areas for residents. Subject to necessary approvals, public use bicycle racks for visitors will be placed near building entrances.
- Electric Vehicle Charging: The Proponent will explore the feasibility of providing electric vehicle charging stations within the garage, which is owned and operated by the BPHC.
- Shared-car Services: Zipcar currently provides up to four vehicles on-site within the Northampton Garage. The Proponent will work with Zipcar, and/or another shared car provider, to determine the appropriateness of adding additional shared vehicles on-site to accommodate the new residents.
- Transportation Coordinator: The Proponent will designate a transportation coordinator to oversee transportation issues including parking, service and loading, and deliveries and will work with residents as they move in to raise awareness of public transportation, bicycling, and walking opportunities.
- Project Web Site: The web site will include transportation-related information for residents, workers, and visitors.

The proponents will work with BTD to determine an appropriate TDM program and will formalize this program in a TAPA.

	2013	2018	2018 Proposed	2018 Build –	
Intersection/Approach	Existing	No-Build	Project	Alt One	
Signalized Intersections					
Massachusetts Ave/Albany St	C	D	D	D	
Albany EB left/thru thru	D	D	D	D	
Albany EB right	D	D	D	D	
Albany WB left	F	F	F	F	
Albany WB thru thru/right	C	С	С	С	
Mass Ave NB thru thru	D	D	D	D	
Mass Ave NB right	C	С	С	С	
Mass Ave SB left	E	F	F	F	
Mass Ave SB thru thru/right	В	В	В	В	
Massachusetts Ave/Harrison Ave	С	С	D	D	
Harrison EB left/thru/right	E	E	Е	E	
Harrison WB left/thru/right	E	E	Е	E	
Mass Ave NB left	А	А	А	А	
Mass Ave NB thru thru/right	С	С	С	С	
Mass Ave SB left	В	С	С	С	
Mass Ave SB thru thru/right	В	В	В	В	
Albany St/Northampton St/Crosstown Dr	С	С	С	С	
Albany EB left/thru thru/right	В	В	В	В	
Albany WB left/thru thru/right	С	С	С	С	
Crosstown NB left/thru	D	D	D	D	
Crosstown NB right	В	В	В	В	
Northampton SB left/thru/right	D	D	D	D	
Unsignalized I	ntersectio	ns	L		
Harrison Ave/Northampton St	-	-	-	-	
Harrison EB left/thru/right	C	С	D	D	
Harrison WB left/thru/right	С	С	С	С	
Northampton NB left/thru/right	C	С	С	С	
Northampton St/Garage	-	-	-	-	
Garage WB left	C	В	С	С	
Garage WB right	В	В	В	В	
Northampton NB thru/right	А	А	А	А	
Northampton SB left/thru	A	А	А	А	

Table 4-15 Level of Service Summary, a.m. Peak Ho

Grey shading indicates worsening LOS from previous condition.

	2013	2018	2018 Proposed	2018 Build –	
Intersection/Approach	Existing	No-Build	Project	Alt One	
Signalized Intersections					
Massachusetts Ave/Albany St	C	D	D	D	
Albany EB left/thru thru	D	D	D	D	
Albany EB right	D	D	D	D	
Albany WB left	E	F	F	F	
Albany WB thru thru/right	A	В	В	В	
Mass Ave NB thru thru	D	D	D	D	
Mass Ave NB right	В	В	В	В	
Mass Ave SB left	E	E	E	E	
Mass Ave SB thru thru/right	C	С	С	С	
Massachusetts Ave/Harrison Ave	D	E	E	E	
Harrison EB left/thru/right	D	D	D	D	
Harrison WB left/thru/right	F	F	F	F	
Mass Ave NB left	В	В	В	В	
Mass Ave NB thru thru/right	В	С	С	С	
Mass Ave SB left	А	В	В	В	
Mass Ave SB thru thru/right	В	С	С	С	
Albany St/Northampton St/Crosstown Dr	С	С	С	С	
Albany EB left/thru thru/right	В	В	В	В	
Albany WB left/thru thru/right	С	С	С	С	
Crosstown NB left/thru	D	D	D	D	
Crosstown NB right	А	А	А	А	
Northampton SB left/thru/right	D	D	D	D	
Unsignalized I	ntersectio	ns			
Harrison Ave/Northampton St	-	-	-	-	
Harrison EB left/thru/right	В	С	С	С	
Harrison WB left/thru/right	E	F	F	F	
Northampton NB left/thru/right	C	С	С	С	
Northampton St/Garage	-	-	-	-	
Garage WB left	В	В	С	С	
Garage WB right	В	В	В	В	
Northampton NB thru/right	A	А	А	А	
Northampton SB left/thru	A	А	А	А	

Table 4-16Level of Service Summary, p.m. Peak Hour

Grey shading indicates worsening LOS from previous condition.

4.5 EVALUATION OF SHORT-TERM CONSTRUCTION IMPACTS

Details of the overall construction schedule, working hours, number of construction workers, worker transportation and parking, number of construction vehicles, and routes will be addressed in detail in a Construction Management Plan (CMP) to be filed with BTD in accordance with the City's transportation maintenance plan requirements. The CMP will also address the need for pedestrian detours, lanes closures, and/or parking restrictions, if necessary, to accommodate a safe and secure work zone.

To minimize transportation impacts during the construction period, the following measures will be incorporated into the CMP:

- Construction workers will be encouraged to use public transportation and/or carpool.
- A subsidy for MBTA passes will be considered for full-time employees; and
- Secure spaces will be provided on-site for workers' supplies and tools so they do not have to be brought to the site each day.

Northampton Square Boston, Massachusetts Figure 4-1 Study Area Intersections Howard/Stein-Hudson Associates, Inc.

Northampton Square Boston, Massachusetts Figure 4-5 Off-Street Parking Howard/Stein-Hudson Associates, Inc.

Northampton Square

Northampton Square Boston, Massachusetts Figure 4-6 **On-Street Parking in the Study Area** Howard/Stein-Hudson Associates, Inc.

Northampton Square Boston, Massachusetts Figure 4-7 **On-Street Curbside Inventory** Howard/Stein-Hudson Associates, Inc.

Northampton Square Boston, Massachusetts Figure 4-8 **Public Transportation** Howard/Stein-Hudson Associates, Inc.

Northampton Square

Northampton Square Boston, Massachusetts Figure 4-11 **Bicycle and Car Sharing Locations** Howard/Stein-Hudson Associates, Inc.

Northampton Square

Northampton Square Boston, Massachusetts Figure 4-12 Area Development Projects Howard/Stein-Hudson Associates, Inc.

Figure 4-13 No-Build Conditions (2018) Traffic Volumes, a.m. Peak Hour Howard/Stein-Hudson Associates, Inc.

Figure 4-14 No-Build Conditions (2018) Traffic Volumes, p.m. Peak Hour Howard/Stein-Hudson Associates, Inc.

Northampton Square Boston, Massachusetts Figure 4-16 Trip Distribution, a.m. and p.m. Peak Hours Howard/Stein-Hudson Associates, Inc.

Chapter 5

Environmental

5.1 INTRODUCTION

The redevelopment of Northampton Square Campus will substantially improve the environmental qualities of the site. Article 80 of the Boston Zoning Code specifies that the BRA may require the proponent, in its Scoping Determination, to study the direct and indirect environmental impacts attributable to the Project. When the potential for impacts exist, design measures may be required to mitigate the impacts to the extent feasible. This section describes the proposed Project and its impacts regarding wind, shadow, daylight, solar glare, air quality, noise, stormwater management and water quality, geotechnical, groundwater recharge, solid and hazardous materials, and construction impacts and plans. Furthermore, the development proposed on the site will be built in full compliance with applicable design guidelines and environmental regulations.

5.2 SHADOW

5.2.1 OVERVIEW

A shadow study was prepared for the Project, which includes the new 23-story building, to evaluate the potential shadow impacts in the vicinity of the site. The study identifies potential shadow impacts for existing and build conditions in the spring (March 21), summer (June 21), fall (September 21), and winter (December 21) months during the morning (9:00 AM), midday (12:00 Noon), and afternoon (3:00 PM) periods. Early evening (6:00 PM) shadow impacts are evaluated for the summer and fall. This section describes the shadow areas and their potential impacts on nearby properties. The results of the shadow analysis are graphically illustrated in Figure 5-1, Shadow Study: March 21, 9 am through Figure 5-14, Shadow Study: December 21, 3 pm.

Vernal Equinox – March 21st

At 9:00 a.m. (Figure 5-1) there is no new shadow cast by the proposed 23-story building.

At 12:00 noon (Figure 5-2), new shadow is cast in a northwesterly direction along parts of Northampton Street and the northern end of Fellows Street.

At 3:00 p.m. (Figure 5-3), new shadow is cast toward the north across an approximately 100-foot long portion of the sidewalk on the south side of Massachusetts Avenue.

Summer Solstice – June 21st

At 9:00 a.m. (Figure 5-4), shadow from the new development will extend in a southwesterly direction, extending in an approximately 100-foot wide path across Northampton, Fellows, and East Lenox streets.

At 12:00 noon (Figure 5-5) new shadow is cast in a westerly direction across Northampton Street and the northern end of Fellows Street.

At 3:00 p.m. (Figure 5-6), no new shadow is cast across any public ways.

At 6:00 p.m. (Figure 5-7), a shadow is cast eastward through portions of Albany Street and a small portion of Massachusetts Avenue.

Autumnal Equinox – September 21st

The shadow conditions for the autumnal equinox are nearly identical to those described for the vernal equinox, except for the slight differences due to the observance of daylight savings time.

At 9:00 a.m. (Figure 5-8), the morning sun projects shadows in a westerly direction. With the proposed building, there are no new shadows cast on public areas.

At 12:00 noon (Figure 5-9), new shadow is cast in a northwesterly direction along parts of Northampton Street and the northern end of Fellows Street.

At 3:00 p.m. (Figure 5-10), new shadow is cast toward the north across an approximately 100-foot long portion of the sidewalk on the south side of Massachusetts Avenue.

At 6:00 p.m. (Figure 5-11), a shadow is cast in an approximately 100-foot wide path in a northeasterly direction along Albany Street and across Massachusetts Avenue.

Winter Solstice – December 21st

The longest shadows of the year will occur during the winter solstice.

At 9:00 a.m. (Figure 5-12), new shadow is cast from the proposed building extends in small strips along a short strip of Northampton Street and Harrison Avenue.

At 12:00 noon (Figure 5-13), new shadow is cast in a northwesterly direction onto a small portion of Massachusetts Avenue.

At 3:00 p.m. (Figure 5-14), new shadow extends in a northerly direction across a small portion of Massachusetts Avenue.

5.2.2 CONCLUSION

The proposed 23-story tower is located in a dense urban area and is surrounded by mainly large institutional and commercial buildings. There are relative few new shadows on public areas due to the orientation of the building relative to its location with other multi-story buildings and the direction of the shadows cast by the existing and proposed buildings.

5.3 DAYLIGHT

The amount of daylight reaching the streets and the sidewalks after development of the Project will be less than would otherwise be the case compared to the existing conditions. The details of the daylight study from two viewpoints, Albany and Northampton streets, are described below.

5.3.1 METHODOLOGY

The daylight analysis was performed utilizing the Boston Redevelopment Authority Daylighting Analysis (BRADA) computer program. Using BRADA, a silhouette view of the building is taken at ground level from the middle of the adjacent city streets or pedestrian ways centered on the proposed building. The façade of the building facing the viewpoint, including heights, setbacks, corners and other features, is plotted onto a base map. The two-dimensional base map generated by BRADA represents a figure of the building in the "sky dome" from the viewpoint chosen. The BRADA program calculates the percentage of daylight that will be obstructed on a scale of 0 to 100 percent. BRADA calculates this obstruction value based on the width of view, the distance between the viewpoint and the building, and the massing and setbacks incorporated into the design of the building. The lower the number, the lower the percentage of obstruction of daylight from any given viewpoint.

This daylight analysis studied existing and build conditions from two viewpoints, Northampton and Albany streets. Due to the complexity of the existing buildings and length of the entire block of buildings along Northampton Street, the viewpoint was taken from the approximate middle of the South End Fitness Center. If the viewpoint was in the middle of the entire block along Northampton Street, the proposed building would have been at the very end of the block and would not have been representative of the amount of obstruction if someone were in front of it.

5.3.2 CONCLUSION

The Project will result in greater daylight obstruction than the existing conditions on Albany and Northampton streets (see Table 5-1, and Figures 5-15 and 5-16). The results of the study show that there will be net increases of 48 percent and 35 percent obstruction from the viewpoints along Albany and Northampton streets, respectively.

While the proposed 23-story building will reduce the daylight penetration to these streets, the building design is consistent with the surrounding urban neighborhood context.

Viewpoint	Existing Condition	Build Condition	Net Increase
Albany Street	33.1%	81.1%	48%
Northampton Street	55.9%	90.7%	35%

Table 5-1:	Daylight Analysis	Results (pe	ercentage obstructed)
------------	--------------------------	--------------------	----------------------	---

5.4 WIND

A quantitative pedestrian level wind study was conducted for the Project. The objective of the study was to assess the effect of the proposed development on local wind conditions in pedestrian areas on and around the study site and provide recommendations for minimizing adverse effects, if any.

The study involved wind simulation tests on a 1:400 scale model of the proposed building and surroundings. These simulations were conducted in a boundary-layer wind tunnel for the purpose of quantifying local wind speed conditions and comparing to appropriate criteria to assess wind comfort in pedestrian areas. The wind criteria and guidelines recommended by the Boston Redevelopment Authority (BRA) were applied in this study. The study methodology and results of the wind tunnel simulations are summarized below. The detailed results of the wind study are presented in Appendix 1.

5.4.1 METHODOLOGY

Information pertaining to the site and surroundings was derived from aerial imagery, information on surrounding buildings supplied by the architect and the BRA, and site plans and elevations of the proposed development provided by the design team (see Figures 5-17, Study Site and Surroundings and 5-18, Conceptual Landscape Site Plan). The following two configurations were simulated:

NO-BUILD CONFIGURATION

The No-Build Configuration included all existing buildings around the project site and those approved, proposed or under construction as directed by the BRA (see Figure 5-19, Annual Pedestrian Wind Conditions – No Build Configuration).

BUILD CONFIGURATION

The Build Configuration included the proposed Northampton Tower, as well as all existing surroundings and those approved, proposed or under construction as directed by the BRA (see Figure 5-20, Annual Pedestrian Wind Conditions – Build Configuration). A conceptual site plan of the grade-level and Level-3 terrace is

included in Figure 5-18. The terrace is the large area above the 3-level parking garage that is available for use by the tenants of the Northampton Square project.

5.4.2 RESULTS

Common to the Boston region and its wind climate, wind conditions were most comfortable in the study area during summer and autumn, and were more active in the winter and spring. The presence of tall existing buildings near the development site has created elevated wind activity under ambient conditions whereby dangerous wind conditions were predicted at one existing location, under No-Build, and at three locations for the Build site conditions on an annual basis. During the winter, the number of locations rated as Dangerous for the No-Build and Build configurations was significantly higher. The presence of high levels of existing wind activity was also apparent as 18 No-Build locations did not meet the BRA Effective Gust Guideline, with 25 locations not meeting the criterion under the Build configuration on an annual basis.

Under the No-Build configuration, annual wind comfort along Albany Street was typically comfortable for walking (Category 3) with four locations predicted as being uncomfortable (Nos 1, 4, 11, and 29). For the Build test configuration, walking conditions also prevailed, noting that uncomfortable winds (Category 4) were predicted at five additional locations, annually.

Existing wind activity on Northampton Street adjacent to the proposed Albany Tower and across the street from the study site was typically uncomfortable (Category 4) for the No-Build configuration. Wind at two locations (No. 66 and 67) near the south side of the proposed tower, increased to dangerous (Category 5) in the build condition. Overall, in other areas along Northampton Street, the Build configuration typically had a positive or neutral effect on the No-Build wind conditions.

With a few exceptions, wind conditions along Massachusetts Avenue were generally satisfactory for walking (Category 3) or better for both test configurations. Two locations were uncomfortable under the No-Build configuration with one additional uncomfortable location predicted for the Build configuration.

The No-Build annual wind conditions along and near Fellows Street typically remained as they exist or were predicted to improve under the Build configuration. Several locations remained above the BRA Guideline.

Build wind conditions along Harrison Avenue were unaffected by the proposed Albany Tower and remained the same as the No-Build condition.

Overall, there is little difference between No-Build and Build wind conditions on the Level-3 terrace.

5.4.3 MITIGATION

The results of the wind study revealed two locations (Nos. 66 and 67) with unacceptable wind conditions in the Build condition, which are located at the south side of the proposed 23-story tower (see Figures 1-6 and 5-20). This area is the main entrance to the proposed building and is adjacent to the proposed pocket park on the west side. To mitigate the potential wind impacts, the following measures are proposed and will be tested to assure their effectiveness:

- 1. Increase street plantings with marcescent species along and near the corner of Northampton and Albany streets. Marcescent species, such as oak or beach, retain most of their leaves in the winter, which will mitigate wind on a yearround basis.
- 2. Incorporate a trellis structure in and/or along the edge of the pocket park, and
- 3. Extend the existing canopy over the front door further out over the entry area.

The strategic placement and design of these and other potential mitigation measures will be investigated as the building design and landscape plan evolve.

5.5 SOLAR GLARE

A solar glare analysis is intended to measure potential reflective glare from the proposed addition and renovation onto potentially affected streets, open spaces, and sidewalk areas in order to determine the likelihood of visual impairment or discomfort due to reflective spot glare.

Large portions of the proposed Albany Street building façade will be architectural precast with punched windows. As a result, these portions of the proposed building create minimal amounts of light reflection. The new glass curtainwall areas will be constructed with low reflective, clear glass, which will mitigate solar glare. It is not anticipated that there will be any significant solar glare impacts to the public way or adjacent buildings.

5.6 AIR QUALITY

The Northampton Square Complex includes outdated 50-year old buildings with inefficient building systems. The Project will rehabilitate the existing 12-story building by using highly efficient systems including HVAC, water facilities, windows, and mechanical systems. This rehabilitation will reduce the amount of greenhouse gas emissions from the project site due to the reduction in use of energy consuming utilities. Additional greenhouse gas emissions

from the new 218-unit Albany Street building will be relatively modest because it will be designed and constructed in compliance with the Green Buildings Standards of Article 37 of the Boston Zoning Code and be a certifiable structure at the LEED NC Silver Level. It will designed to meet the Massachusetts Stretch Code design standards, which are approximately 20 percent more energy efficient than the current state building code.

While the new Albany Street building will create new vehicle trips to the Project Site from new residents and workers, the number of trips is expected to be modest. Due to the transit oriented location in a dense urban neighborhood, up to 43% of the new trips from the Project are anticipated to be walk, bike or transit trips. Less than 1,000 new daily vehicle trips are anticipated. In conjunction with the Boston Transportation Department (BTD), a Transportation Demand Management (TDM) program will be prepared to further reduce vehicle trips to the site and will include parking management, promotion of public transit, access to Zipcar car sharing services, and secure bicycle storage for residents.

5.7 NOISE

The primary sources of external mechanical noise will include air ventilations systems that are part of the Project's mechanical systems. It is not anticipated that the rooftop equipment will exceed maximum sound levels, and thus no mitigation is proposed. The existing mechanical systems serving 860 Northampton Street which are now located at ground level will be relocated to the roof, further reducing sound levels. During the final design of the Project, appropriate low-noise mechanical equipment in the mechanical penthouse and noise control measures will be selected for all sensitive locations to ensure compliance with the City of Boston and DEP noise regulations.

5.8 STORMWATER MANAGEMENT AND WATER QUALITY

The Project will not affect the water quality of nearby water bodies. Erosion and sediment control measures will be implemented during construction to minimize the transport of site soils to off-site areas and Boston Water and Sewer Commission ("BWSC") storm drain systems. During construction, existing catch basins will be protected with filter fabric, hay bales and/or crushed stone, to provide for sediment removal from runoff. These controls will be inspected and maintained throughout the construction phase until all areas of disturbance have been stabilized through the placement of pavement, structure, or vegetative cover.

All necessary dewatering associated with the new construction components will be conducted in accordance with a Massachusetts Water Resource Authority (MWRA) and BWSC discharge permits. Once construction is complete, the Project will be in compliance with all local and state stormwater management policies.

5.8.1 DEP STORMWATER MANAGEMENT POLICY STANDARDS

In February of 2008, the DEP revised their Stormwater Management Standards to better address water quality and water quantity issues associated with project sites. The revisions promote increased stormwater recharge, treatment of more runoff from polluting land uses, low impact development (LID) techniques, pollution prevention, the removal of illicit discharges, and improved operation and maintenance of stormwater best management practices (BMPs). A brief explanation of each Standard and the system compliance is provided below.

Standard #1: No new stormwater conveyances (e.g., outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

Compliance: The proposed design will comply with this Standard. No new untreated stormwater will be directly discharged to, nor will erosion be caused to wetlands or waters of the Commonwealth as a result of stormwater discharges related to the proposed Project.

Standard #2: Stormwater management systems must be designed so that postdevelopment peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

Compliance: The proposed design will provide a decrease in the impervious area compared to the pre-development condition, from 113,637 square feet (existing) to 107,531 square feet (proposed). Drainage and runoff collection and disposal systems will be designed to minimize impacts of the Project on the existing storm sewer systems. To mitigate the impacts, a portion of the Project's roof area will be vegetated, and/or a portion of the stormwater runoff will discharge into an underground stormwater recharge/detention system or will be collected in a rainwater reuse tank and used for site irrigation. These proposed measures will substantially improve stormwater runoff and water quality from the project site.

Standard #3: Loss of annual recharge to ground water shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook. Compliance: The Project proposes a decrease (4%) to the site's impervious area. The Project will incorporate measures to maintain or improve the annual recharge to groundwater by utilizing pervious pavers and/or a below grade stormwater recharge system.

Standard #4: Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This standard is met when:

- a) Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained;
- b) Structural stormwater best management practices are sized to capture the required water quality volume as determined in accordance with the Massachusetts Stormwater Handbook; and
- c) Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

Compliance: The Project will meet or exceed all standards.

Standard #5: For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention, all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

Compliance: The Project is not associated with Higher Potential Pollutant Loads (per the Policy, Volume I, page 1-8). This Project complies with this standard.

Standard #6: Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply and stormwater discharges near or to any other critical area require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00.5 Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of the public water supply.

Compliance: The Project will not discharge untreated stormwater to a sensitive area or any other area.

Standard #7: A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

Compliance: The Project will meet or exceed all standards.

Standard #8: A plan to control construction related impacts, including erosion, sedimentation, and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

Compliance: The Project will comply with this standard. Sedimentation and erosion controls will be incorporated as part of the design of this Project and employed during Site construction.

Standard #9: A long term Operation and Maintenance (O&M) Plan shall be developed and implemented to ensure that stormwater management systems function as designed.

Compliance: A long term Operations and Maintenance Plan shall be developed and maintained for this Project.

Standard #10: All illicit discharges to the stormwater management system are prohibited.

Compliance: There will be no illicit discharges associated with this Project.

5.8.2 MITIGATION MEASURES

Stormwater runoff from the site and roof of the building drains to the stormwater system in the adjacent streets and ultimately to Boston Harbor. The impervious area of the site will decrease as a result of the Project and consequently the peak rate of runoff in the proposed condition will be slightly less than that of the existing condition. To reduce stormwater impacts, a portion of the Project's roof will be vegetated, and/or a portion of the stormwater runoff will discharge into an underground stormwater recharge/detention system, and/or a portion of stormwater runoff will be collected in a rainwater reuse tank and used for site irrigation. The Proponent will also investigate the possibility of achieving LEED credit SS6.1 Stormwater Quantity which would require a reduction of the peak rate and volume of the runoff by 25% prior to it entering the city's stormwater system.

Within the Project's limit of work, ground cover will consist primarily of roof area and landscaping. The Project will investigate the possibility of achieving LEED credit SS6.2 Stormwater Quality, which would require water quality treatment of the runoff from the site prior to it entering the city's stormwater system. In addition, the Project will investigate the reuse of stormwater runoff from the roof of the building for use as landscape irrigation.

5.8.3 COORDINATION WITH THE BOSTON WATER & SEWER COMMISSION

Proposed connections to the Commission's water, sanitary sewer, and storm drain system will be designed in conformance with the Commission's design standards, Sewer Use and Water Distribution System Regulations, and Requirements for Site Plans. The proponent will submit a General Service Application and a site plan for review and approval prior to construction. The site plan will indicate the existing and proposed water mains, sanitary sewers, storm sewers, telephone, gas, electric, steam, and cable television. The plan will include the disconnections of the existing services as well as the proposed connections. See Chapter 6, Infrastructure for a discussion of existing and proposed water, sanitary sewer, and stormwater conditions and mitigation measures.

5.9 FEMA FLOOD ZONES

Federal Emergency Management Agency's (FEMA) Flood Insurance Rate Map (FIRM) for the City of Boston (Community Panel 25025C0079G, updated September 2009) was reviewed to determine if the project site lies within the 100-year flood plain. The project site falls within a Zone C, defined by FEMA as an "area of minimal flooding." Thus, the Project will not lead to an increased flood or storm damage risk.

5.10 GEOTECHNICAL AND GROUNDWATER

5.10.1 GEOTECHNICAL

Fronting onto Northampton Street to the northeast, the subject property is bounded by Albany Street to the southeast, an active construction site to the southwest and commercial property to the northwest. Currently, the location of the new Albany Street building is partially vacant and partially occupied by the Miranda Creamer building.

The proposed scope of development will consist of a 23-story above grade multi-unit residential building. The first through fourth floors will be occupied by mechanical space, a trash service room, a residential lobby, residential amenities, a fitness center lobby, and residential units. Floors five through twenty three will consist of all residential units. Floors four through seven in Alternative One will have office uses. The proposed building footprint will occupy approximately 11,000 square feet at the ground level.

Based upon review of historical boring information and local foundation and construction experience, it is anticipated that the existing ground surface is underlain by a thickness of miscellaneous fill material associated with historic site filling. The thickness of the fill material is anticipated to range from about 6 to 16 feet in thickness. Based upon local geology, the fill material is underlain by an organic deposit consisting or organic silt and peat ranging in thickness from about 5 to 10 feet. Beneath the organic deposit, we anticipate a glacial outwash deposit, which generally consists of sand and gravel with trace to some silt that extends to a depth of about 25 to 30 feet below ground surface. Below the outwash is a marine clay deposit that varies from stiff near the surface to soft with increasing depth. The clay extends to a depth of about 80 to 90 feet below ground surface where it is underlain by a dense glacial till deposit overlying bedrock. The bedrock is anticipated to be a shale-like deposit known as Cambridge Argillite.

Due to the nature of the proposed development and the anticipated subsurface conditions underlying the subject site, foundation support will be provided by a pile foundation system bearing in the glacial till and/or bedrock with the lowest level slab being structurally supported.

Subsurface explorations will be performed to evaluate site specific conditions and a Foundation Engineering Report will be generated in accordance with the provisions of the Massachusetts State Building Code, 8th Edition.

There is an MWRA easement for an approximately 310-foot deep, 10-foot diameter main drainage tunnel located at the southeast corner of the Site. Work within this easement will require an 8(m) Permit from the MWRA.

5.10.2 GROUNDWATER

Although the project site is not located within the Groundwater Conservation Overlay District (GCOD), the Project will study the groundwater depths in order to determine the appropriate design and construction methodology for the proposed building. The groundwater level in the area of the subject site is likely to range from depths of about 12 to 16 feet below existing ground surface. It is anticipated that future groundwater levels across the site may vary from those reported herein due to factors such as normal seasonal changes, runoff particularly during or following periods of heavy precipitation, and alterations of existing drainage patterns.

Dewatering effluent generated during temporary construction dewatering will be discharged in compliance with applicable regulations and discharge permits. Groundwater levels outside the excavation will be monitored and measures undertaken if impacts exceed contract requirements. Groundwater quality will also be monitored during construction as part of the discharge permit requirements.

Construction of the proposed development is not expected to have adverse short or long-term impact on groundwater conditions.

5.10.3 ENVIRONMENTAL SITE ASSESSMENT

A Phase I Environmental Site Assessment (ESA) will be conducted for the subject site. The Phase I ESA will be completed in accordance with ASTM E 1527-05 as referenced in 40 CFR Part 312 (the All Appropriate Inquiries Rule). In the event that Recognized Environmental Conditions (RECs) are identified during the Phase I ESA, a Phase II ESA will be completed in accordance with ASTM 1903-02.

A plan to conduct a program of soil and groundwater quality testing prior to construction to determine the options for reuse, recycling, disposal or treatment of soil within the limits of excavation will be implemented. Groundwater testing will be conducted in support of obtaining temporary construction dewatering permits.

Should conditions at the site warrant regulatory notification, notification and reporting to the DEP will be conducted in accordance with the provisions of the Massachusetts Contingency Plan (MCP). The Proponent will retain a Licensed Site Professional (L.S.P.) to manage the environmental aspects of the Project, including proper management and/or disposal of contaminated soil and/or groundwater during construction.

Excess soil will require characterization to assess its disposition for off-site reuse, disposal, treatment or recycling in accordance with DEP policy COMM-97-001 and the MCP. Therefore, a soil characterization program will be implemented to precharacterize the soil and a Soil Management Plan will be prepared summarizing the results of chemical testing and providing soil disposal recommendations. The construction contractor will be responsible for proper off-site removal of contaminated soil, and disposal of solid waste and debris.

5.11 SOLID AND HAZARDOUS MATERIALS

5.11.1 BUILDING RENOVATIONS

The building at 860 Harrison Avenue was surveyed for hazardous materials. An Asbestos Containing Materials (ACM), Lead Based Paint (LBP), and Regulated Materials Survey Report was conducted by Vertex Environmental Services, Inc. in preparation of the renovation and demolition activities. VERTEX's asbestos inspectors performed the inspection to identify suspect ACMs associated with the interior and exterior portions of the building. Through sampling and analysis of all suspect materials, it was determined that ACMs, lead, and regulated materials (e.g. light ballasts, fluorescent tubes, and mercury switches) were found to exist within these buildings.

For renovation/demolition purposes all confirmed ACMs are required to be removed and disposed of in accordance with all local, state, and federal regulations or properly encapsulated in place. Areas where lead is expected to be disturbed will require compliance with OSHA regulations for worker protection. Regulated materials will have to be properly packaged, disposed, and, recycled in accordance with applicable regulations. Therefore, licensed abatement contractors will remove and dispose of ACMs, PCB light ballasts, mercury-containing fluorescent bulbs, lead paint, and other hazardous wastes. Proper dust control measures will be exercised. Solid waste generated by renovation will be collected and disposed off site by a licensed contractor. The Project will be designed to allow at-source separation of recyclables, including paper, metal, glass and plastics. The remainder of the materials (plaster, brick, cement concrete,) will be recycled in accordance with regulations. Any bituminous materials collected will also be recycled.

Renovation activity must comply with the Solid Waste and Air Quality regulations. According to the Solid Waste provision of M.G.L. Chapter 40, Section 54, a city of Boston building permit or license is required for demolition/renovation at the site. Debris generated from the development will disposed of at a licensed solid waste disposal facility.

5.11.2 OPERATING AND DISPOSAL PLAN

Hazardous materials collected from the site will be evaluated and classified in accordance with 40 CFR 261 to ensure safe removal and disposal. These materials will be removed by a licensed contractor. Hazardous waste manifests, Bills of Lading, and other appropriate documentation will be generated in accordance with local, state, and federal regulations.

5.12 CONSTRUCTION IMPACTS AND PLANS

The following section describes impacts likely to result from the Project's construction and steps that will be taken to avoid or minimize environmental and transportation-related impacts. The proponent will employ a construction manager who will be responsible for developing a construction phasing and staging plan and for coordinating construction activities with all appropriate regulatory agencies. The Project's geotechnical consultant will provide consulting services associated with foundation design recommendations, prepare geotechnical specifications, and review the construction contractor's proposed procedures.

5.12.1 CONSTRUCTION MANAGEMENT PLAN

The proponent will comply with applicable state and local regulations governing construction of the Project. The proponent will require that the general contractor comply with the Construction Management Plan ("CMP") developed in consultation with and approved by the Boston Transportation Department ("BTD") prior to the commencement of construction. The construction manager will be bound by the CMP, which will establish the guidelines for the duration of the Project and will include specific mitigation measures and staging plans to minimize impacts on abutters.

Proper pre-construction planning with the neighborhood will be essential to the successful construction of this Project. Construction methodologies that will ensure safety will be employed. Signage will include construction manager contact information with emergency contact numbers.

5.12.2 CONSTRUCTION ACTIVITY SCHEDULE

The construction period for the proposed Project is expected to last approximately two and a quarter years, beginning by July 2014 and reaching completion by July 2015 for renovations at 860 Harrison Avenue and by October 2016 for construction of the Albany Tower. The Project will comply with City of Boston Noise and Work Ordinances. Normal work hours will be from 7:00 AM to 6:00 PM, Monday through Friday, along with any approved exceptions.

5.12.3 PERIMETER PROTECTION/PUBLIC SAFETY

The CMP will describe any necessary sidewalk closures, pedestrian re-routings, and barrier placements and/or fencing deemed necessary to ensure safety around the site perimeter. Barricades and secure fencing will be used to isolate construction areas from pedestrian traffic. In addition, sidewalk areas and walkways near construction activities will be well marked and lighted to ensure pedestrian safety.

The proponent will continue to coordinate with all pertinent regulatory agencies and representatives of the surrounding neighborhoods to ensure they are informed of any changes in construction activities.

5.12.4 CONSTRUCTION TRAFFIC IMPACTS

Estimated truck deliveries and routes will be identified and described in the supplemental transportation analysis being prepared for the Project. Specific truck routes will be established with BTD through the CMP.

5.12.5 CONSTRUCTION WORKER PARKING

The number of workers required for construction of the Project will vary during the construction period. However, it is anticipated that all construction workers will arrive and depart prior to peak traffic periods. No personal vehicles will be allowed to park in the nearby neighborhood. Further, public transit use will be encouraged with the proponent and construction manager to ensure the construction workers are informed of the public transportation options serving the area.

5.12.6 CONSTRUCTION AIR QUALITY

Construction activities may generate fugitive dust emission from construction activities, which will depend on such factors as the properties of the emitting surface (e.g. moisture content), meteorological variables, and construction practices employed. To reduce emission of fugitive dust and minimize impacts on the local environment the construction contractor will adhere to a number of strictly enforceable mitigation measures. These measures may include:

- Using wetting agents to control and suppress dust from construction debris;
- Ensuring that all trucks traveling to and from the site will be fully covered;
- Removing construction debris regularly;
- Monitoring construction practices closely to ensure any emissions of dust are negligible;
- Cleaning streets and sidewalks to minimize dust and dirt accumulation; and
- Wheel-washing trucks before they leave the site during the excavation phase.

5.12.7 CONSTRUCTION NOISE IMPACTS

Intermittent increases in noise levels will occur in the short-term during construction. Construction work will comply with the requirements of the City of Boston noise ordinance. Because there are occupied residential buildings with the site, this issue will be carefully addressed. To reduce the noise impacts of construction, a number of noise mitigation measures will be included in the CMP. Some of the measures that may be taken to ensure a low level of noise emissions include:

- Initiating a proactive program for compliance with the City of Boston's noise limitation impact;
- Using mufflers on all equipment and ongoing maintenance of intake and exhaust mufflers;
- Muffling enclosures on running equipment;
- Scheduling construction activities so as to avoid the simultaneous operation of the noisiest construction activities;
- Turning off all idling equipment;
- Locating noisy equipment away from abutters and residents; and
- Shielding the noise generator by distance or enclosure.

5.12.8 UTILITY PROTECTION DURING CONSTRUCTION

During construction, the City's infrastructure will be protected using sheeting and shoring, temporary relocations, and construction staging as required. The contractor will be required to coordinate all protection measures, temporary supports, and temporary shutdowns of all utilities with the appropriate utility owners and/or agencies. The contractor will also be required to provide adequate notification to the utility owner/operator prior to any work commencing on their utility. Also, in the event a utility cannot be maintained in service during a switch-over to a temporary or permanent system, the contractor will be required to coordinate the shutdown with the utility owners/operators and Project abutters to minimize impacts and inconveniences accordingly.

5.12.9 RODENT CONTROL

The City of Boston enforces the requirements established under Massachusetts State Sanitary Code, 105 CMR 410.550. This policy establishes that the elimination of rodents is required for issuance of any building permits. During construction, rodent control service visits will be made by a certified rodent control firm to monitor the situation.

5.13 HISTORIC RESOURCES

The Project Site is located on Massachusetts Avenue between Harrison Avenue and Albany Street in the South End /Lower Roxbury neighborhood of Boston, MA. It is not located within any historic district. A review of the MACRIS system database did not reveal any historic properties within the area of potential effect of the project site. Furthermore, the Massachusetts Historical Commission issued a Determination of No Adverse Effect on the South End Historic District in response to the ENF that was submitted to MEPA for this Project.

The Site, however, is located within the South End Landmark District and Protection Area. See Figure 5-21 for a view of this Area. Demolition and construction of buildings with the Protection Area must have approval of the South End Landmarks Commission (SELC). The Commission reviews construction projects based on their setbacks, height, topography, and landscaping. The SELC issued a positive determination for the Phase 1 portion of the Project (renovation of 35 Northampton Street) in October 2012, stating the proposed work was exempt from review. The Proponent will be submitting an Application for Certificate of Appropriateness within the next month for the Proposed Project.

5.14 TIDELANDS

The Project is considered landlocked Tidelands. The Secretary of Energy and Environmental Affairs confirmed in the MEPA Certificate (No. 14854) that no additional Public Benefits Review is required due to the affordable housing nature of the Project.

Northampton Square Boston, Massachusetts Figure 5-1 Shadow Study Vernal Equinox: March 21, 9:00 am Source: The Architectural Team, 2013

Northampton Square Boston, Massachusetts Figure 5-2 Shadow Study Vernal Equinox: March 21, Noon Source: The Architectural Team, 2013

Figure 5-3 Shadow Study Vernal Equinox: March 21, 3:00 pm Source: The Architectural Team, 2013

Figure 5-4 Shadow Study Summer Solstice: June 21, 9:00 am Source: The Architectural Team, 2013

Figure 5-5 Shadow Study Summer Solstice: June 21, Noon Source: The Architectural Team, 2013

Figure 5-6 Shadow Study Summer Solstice: June 21, 3:00 pm Source: The Architectural Team, 2013

Figure 5-7 Shadow Study Summer Solstice: June 21, 6:00 pm Source: The Architectural Team, 2013

Figure 5-9 Shadow Study Autumnal Equinox: September 21, Noon Source: The Architectural Team, 2013

Figure 5-10 Shadow Study Autumnal Equinox: September 21, 3:00 pm Source: The Architectural Team, 2013

Figure 5-11 Shadow Study Autumnal Equinox: September 21, 6:00 pm Source: The Architectural Team, 2013

Figure 5-12 Shadow Study Winter Solstice: December 21, 9:00 am Source: The Architectural Team, 2013

Figure 5-13 Shadow Study Winter Solstice: December 21, Noon Source: The Architectural Team, 2013

Figure 5-14 Shadow Study Winter Solstice: December 21, 3:00 pm Source: The Architectural Team, 2013

Existing Condition

Proposed Condition

Obstruction of daylight by the building is 55.9 % Press any key to continue ...

Existing Condition

Obstruction of daylight by the building is 90.7 % Press any key to continue ...

Proposed Condition

Figure 5-17 Study Site and Surroundings Source: The Architectural Team, 2013

Figure 5-18 Conceptual Landscape Site Plan Source: The Architectural Team, 2013

indicates Wind Sensor Location

Figure 5-19 Annual Pedestrian Wind Conditions – No Build Configuration Source: Novus Environmental, 2013

Northampton Square

Figure 5-20 Annual Pedestrian Wind Conditions – Build Configuration Source: Novus Environmental, 2013

Northampton Square Boston, Massachusetts

Chapter 6

INFRASTRUCTURE

6.1 INTRODUCTION

The Northampton Square Project has adequate water, sanitary, stormwater, energy, and telecommunications infrastructure to serve the proposed development. This section explains the existing and proposed conditions of each infrastructure element. All appropriate permits and approvals will be acquired prior to construction. Utility connections will be designed to minimize impacts to the surrounding area.

There are two primary building components for the proposed Project that consist of:

- 1. Renovation of 860 Harrison Avenue 102 units to remain,
- 2. Construction of new residential building at Northampton and Albany streets 218 new units.

Taken together, the building improvements will create an additional 279 bedrooms resulting in an increase in demand for water consumption and sewer discharge. To lower the impact of the increase in demand on these services, the existing 102 units being rehabbed will be upgraded to low flow water fixtures, which will help decrease the impact from the Project site, even though this decrease is not accounted for in the estimated water consumption or sewer discharge rates as dictated by 310 CMR 15.203. The potential impact of each building on the infrastructure is further detailed in the following utility sections.

An alternative plan is also included as part of this EPNF. Instead of 28 residential units on floors 4 through 7 within the proposed new tower, these floors will be for office use. This plan will result in a slight less amount of water be used and sewer being discharged as described below.

6.2 SANITARY SEWER SYSTEM

The Project's future sewage generation rates were estimated using the Massachusetts State Environmental Code, 310 CMR 15.203. A summary of the anticipated sewage flow is listed below in Table 6-1.

The building at 860 Harrison Avenue may be able to reuse the existing sanitary service laterals currently serving the buildings. A video inspection will be performed on each service to determine the condition of the service, and the design engineers will determine, in consultation with the Boston Water and Sewer Commission (BWSC), if the existing service is in good condition and properly sized for the proposed flow. If a new service is

required, there are one or more BWSC sanitary mains located in the right of way adjacent to each building.

Building	Existing Use Description	Existing Flow (gpd)	Proposed Use Description	Proposed Estimated Flow (gpd)	Proposed Increase of Flow (gpd)
860 Harrison	Residential 139 Bedrooms	22,491	128 Bedrooms 110 gpd/Bedroom 6,500 sf office 75 gpd/1000 sf	14,568	-7,923
New Albany Street Building	N/A	0	279 Bedrooms 110 gpd/Bedroom 5,000 sf Office 75 gpd/1000 sf	31,065	31,065
Totals		22,491		45,633	23,142

Table 6-1: Estimated New Sewage Discharges – Proposed Use

*All rehabbed and new units will have low flow fixtures, so actual flows will be lower than these calculations.

The proposed alternative will have 40,000 sf of space on floors 4 through 7 utilized for office use, and therefore there will be a reduction of 36 bedrooms from the proposed new building (see Table 6-2). This change from residential to office use will result in a reduction of 1,335 gpd of sewer discharge.

Table 6-2:	Estimated N	ew Sewage	Discharges -	Alternative	Use with	Office
------------	-------------	-----------	---------------------	-------------	----------	--------

Building	Existing Use Description	Existing Flow (gpd)	Proposed Use Description	Proposed Estimated Flow (gpd)	Proposed Increase of Flow (gpd)
860 Harrison	Residential 139 Bedrooms	22,491	128 Bedrooms 110 gpd/Bedroom 6,500 sf office 75 gpd/1000 sf	14,568	-7,923
New Albany Street Building	N/A	0	243 Bedrooms 110 gpd/Bedroom 40,000 office 75 gpd/1000 sf	29,730	29,730
Totals		22,491		44,298	21,807

*All rehabbed and new units will have low flow fixtures, so actual flows will be lower than these calculations.

For the construction of the new 218-unit building at Northampton and Albany Streets, a new sewer service must be connected to the BWSC sewer system within either Northampton Street or Albany Street. There appears to be sufficient capacity in the 42-inch sanitary main located in Northampton Street, although further design and review is required by the design engineers in consultation with BWSC. If necessary, a second or alternate sanitary service may connect to the existing sanitary main in Albany Street. The sewer main in Albany Street appears to be 18 inches in diameter. The actual size and location may be determined by further field survey.

Based on the sewage flow estimates and the current sewer information available, sufficient sewer service can be provided to the proposed development. The net increase of estimated sewage generation from the proposed development will require a compliance certification with the Massachusetts Department of Environmental Protection (MassDEP).

6.2.1 I/I MITIGATION

In accordance with the DEP Policy regarding new projects subject to MEPA in communities with combined sewers, the Project will participate in a 4:1 infiltration/inflow (I/I) removal program. This program requires that the applicant remove four gallons of infiltration and inflow into the sewer system for every one gallon of average daily flow proposed by the Project. The BWSC is the entity that identifies the proposed mitigation project.

Table 6-3 provides the calculations used by the BWSC to determine the monetary value of the I/I mitigation contribution for the net new flows proposed by the Project. Alternative One is based on the use of 40,000 sf on the 4th through 7th floors of the proposed 23-story building for office space instead of the use of 36 bedrooms.

	Proposed	Alternative One
	Project	(with office)
Estimated Wastewater flow	23,142 gpd	21,807 gpd
Cost Multiplier (\$9.72)	\$224,940	\$211,964

Table 6-3: I/I Mitigation Contribution

The proponent will be having discussions with the BWSC and MassDEP regarding a commitment to provide infiltration/inflow (I/I) mitigation. It is anticipated that the Project will contribute a payment in the amount of \$224,940 for the proposed Project or \$211,964 for Alternative One.

6.3 WATER SUPPLY SYSTEM

Water consumption on the site averages 12,342 gpd, which is based on the FY2011 water consumption records provided by the current owner, the Boston Public Health Commission. The increase in water consumption is expected to be 24,507 gallons per day (gpd), based on the Project's estimated increase of sewage generation. A factor of 1.1 (conservative) is applied to the estimated wastewater discharge rate to estimate daily water use.

Currently, water services are available in every street surrounding the Project, each owned and maintained by BWSC. The design engineers will be determining whether the existing domestic and fire protection water service laterals are adequate for the renovated buildings in consultation with BWSC or if new services will be required for the development.

The existing fire protection service at 860 Harrison Avenue will need to be modified to accommodate the reconfiguration of spaces proposed for the first floor. When complete, the fire protection system will meet all codes and standards.

The proposed building will require new domestic and fire protection water services. The actual size and location of these services will be proposed by the design engineers in consultation with BWSC. Adjacent to the proposed building, there are 12-inch low pressure services in Northampton Street and Albany Street. A flow test will be required on each water main near each service lateral to determine if adequate pressure is available for the proposed building.

The proposed alternative will have 40,000 sf of space on floors 4 through 7 utilized for office use, and therefore there will be a reduction of 36 bedrooms (28 units) from the proposed new building (see Table 6-2). This change from residential to office use will result in a reduction of 1,470 gpd of water use.

6.4 STORMWATER

6.4.1 EXISTING DRAINAGE CONDITIONS

Most of the Project area is currently impervious due to building and parking garage coverage and paved vehicular areas serving the site. There are small landscaped areas surrounding the outer portions of the building complex adjacent to the street. There are no existing stormwater catch basins on the site although there are at least two stormwater drains servicing the property, connected to the stormwater system in Massachusetts Avenue.

Stormwater on the existing landscaped areas between the buildings and streets discharges via sheet flow into the surrounding street drainage systems. All of the stormwater drains connect to the Roxbury Canal Conduit, which discharges into the Fort Point Channel and ultimately Boston Harbor. It is unknown at this time where the roof drains connect to the storm drain system.

6.4.2 **PROPOSED DRAINAGE CONDITIONS**

During the renovations of 860 Harrison Avenue, many of the roof areas will remain unchanged. However, there are a few sizable improvements that will improve the stormwater drainage conditions when the construction of this development is complete.

The parking garage in the middle of the site will be substantially improved by creating a green roof on the large roof deck, thereby reducing the peak rate of stormwater runoff from the existing conditions. Further information regarding this improvement will be provided by the architects and design engineers.

The proposed building at Northampton and Albany streets will extend into current landscaped area adjacent to Albany Street. All stormwater runoff from the proposed 24-story building will be collected via a closed drainage system and, treated with best management practices. This runoff is intended to be discharged into the existing stormwater drainage system.

Overall, the site will have a decrease in impervious area of approximately 6,100 sf. Drainage and runoff collection and disposal systems will be designed to minimize impacts of the Project on the existing storm sewer systems. To mitigate the impacts, a portion of the Project's parking garage roof area will be vegetated, and/or a portion of the stormwater runoff will discharge into an underground stormwater recharge/detention system or will be collected in a rainwater reuse tank and used for site irrigation. These proposed measures will substantially improve stormwater runoff and water quality from the project site.

6.5 ENERGY AND TELECOMMUNICATIONS

The site is currently serviced with electric, telephone, cable, and gas services. All proposed utility connections will be coordinated with each respective utility provider.

Gas

Gas service to the property is provided by National Grid Energy Delivery.

Ample capacity is available from the gas main in Northampton Street. Changes to the gas service at 860 Harrison are not anticipated in the renovation for this Project.

A new gas service will be required for the new Albany Street building at Northampton and Albany streets. Ample capacity is available from the both gas mains in either Northampton Street or Albany Street.

<u>Electric</u>

Electrical service is provided to the property by NSTAR. All improvements will be able to be accommodated upon further coordination with NSTAR.

The renovation at 860 Harrison Avenue will include new electrical services to accommodate new 100-amp 120/208 volt load centers installed in each of the residential units. Also included in the renovation are Energy Star rated light fixtures that will be installed throughout the building. All features of the electrical system will be renovated to all codes and standards.

New electrical service will be brought into the proposed building at Northampton and Albany streets. An electric utility vault will most likely be constructed inside the building to accommodate the transformer and switchgear needed to service the residential units. Coordination with NSTAR will be required to determine actual location, size, and type of service.

Telecommunications

The Proponent is working with Verizon and Comcast Cable with the goal of providing residents with a choice between the two services.

Appendix 1

TRANSPORTATION STUDY

File Name : 133243 A Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

						Gro	oups Print	ed- Cars -	Heavy Ve	hicles							
	Ma	assachuse	tts Aveni	Je		Albany	Street		Ma	assachuse	tts Avenu	le		Albany	Street		
		From N	Jorth			From	East			From S	South			From \	Vest		
Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Int. Total
07:00 AM	6	131	18	0	13	50	18	0	78	235	0	0	8	49	15	0	621
07:15 AM	14	141	9	0	24	42	21	0	83	241	1	0	13	62	13	0	664
07:30 AM	11	161	26	0	18	53	34	0	78	225	0	0	19	68	22	0	715
07:45 AM	10	170	20	0	18	44	32	0	95	226	1	0	14	77	16	0	723
Total	41	603	73	0	73	189	105	0	334	927	2	0	54	256	66	0	2723
08:00 AM	11	166	26	0	16	46	25	0	102	254	0	0	12	73	18	0	749
08:15 AM	9	168	21	0	20	39	36	0	96	250	0	0	10	89	16	0	754
08:30 AM	12	171	20	1	33	42	29	0	92	208	0	0	17	75	24	0	724
08:45 AM	13	147	24	0	24	58	29	0	75	219	0	0	10	73	25	0	697
Total	45	652	91	1	93	185	119	0	365	931	0	0	49	310	83	0	2924
Grand Total	86	1255	164	1	166	374	224	0	699	1858	2	0	103	566	149	0	5647
Apprch %	5.7	83.3	10.9	0.1	21.7	49	29.3	0	27.3	72.6	0.1	0	12.6	69.2	18.2	0	
Total %	1.5	22.2	2.9	0	2.9	6.6	4	0	12.4	32.9	0	0	1.8	10	2.6	0	
Cars	62	1159	151	1	151	345	185	0	652	1712	2	0	94	513	115	0	5142
% Cars	72.1	92.4	92.1	100	91	92.2	82.6	0	93.3	92.1	100	0	91.3	90.6	77.2	0	91.1
Heavy Vehicles	24	96	13	0	15	29	39	0	47	146	0	0	9	53	34	0	505
% Heavy Vehicles	27.9	7.6	7.9	0	9	7.8	17.4	0	6.7	7.9	0	0	8.7	9.4	22.8	0	8.9

		Massa	chusetts	s Avenue			Al	bany St	reet			Massad	chusetts	Avenue)		Al	bany St	reet		1
		F	rom No	orth			I	From Ea	st			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analy	ysis Fror	n 07:00 /	AM to 08	3:45 AM -	Peak 1 c	of 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begin	s at 07:	45 AM															
07:45 AM	10	170	20	0	200	18	44	32	0	94	95	226	1	0	322	14	77	16	0	107	723
08:00 AM	11	166	26	0	203	16	46	25	0	87	102	254	0	0	356	12	73	18	0	103	749
08:15 AM	9	168	21	0	198	20	39	36	0	95	96	250	0	0	346	10	89	16	0	115	754
08:30 AM	12	171	20	1	204	33	42	29	0	104	92	208	0	0	300	17	75	24	0	116	724
Total Volume	42	675	87	1	805	87	171	122	0	380	385	938	1	0	1324	53	314	74	0	441	2950
% App. Total	5.2	83.9	10.8	0.1		22.9	45	32.1	0		29.1	70.8	0.1	0		12	71.2	16.8	0		L
PHF	.875	.987	.837	.250	.987	.659	.929	.847	.000	.913	.944	.923	.250	.000	.930	.779	.882	.771	.000	.950	.978
Cars	32	626	81	1	740	80	163	104	0	347	361	874	1	0	1236	46	288	60	0	394	2717
% Cars	76.2	92.7	93.1	100	91.9	92.0	95.3	85.2	0	91.3	93.8	93.2	100	0	93.4	86.8	91.7	81.1	0	89.3	92.1
Heavy Vehicles	10	49	6	0	65	7	8	18	0	33	24	64	0	0	88	7	26	14	0	47	233
% Heavy Vehicles	23.8	7.3	6.9	0	8.1	8.0	4.7	14.8	0	8.7	6.2	6.8	0	0	6.6	13.2	8.3	18.9	0	10.7	7.9

File Name : 133243 A Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

Groups Printed- Cars Massachusetts Avenue Albany Street Massachusetts Avenue Albany Street From North From East From South From West Start Time Right Thru U-Turn Right Left U-Turn Right Thru Left U-Turn Right Thru Left U-Turn Int. Total Left Thru 07:00 AM 07:15 AM 07:30 AM 07:45 AM Total 08:00 AM 08:15 AM 08:30 AM 08:45 AM Total Grand Total Apprch % 4.5 50.7 72.4 84.4 0.1 22.2 27.2 27.6 0.1 71.1 15.9 Total % 1.2 22.5 2.9 2.9 6.7 3.6 12.7 33.3 1.8 2.2

		Massa	chusetts	Avenue	е		Al	bany St	reet			Massa	chusetts	s Avenue	9		Al	bany St	reet		
		F	rom No	rth			F	From Ea	ast			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis Fron	n 07:00 /	AM to 08	3:45 AM	- Peak 1 c	of 1															
Peak Hour fo	for Entire Intersection Begins at 07:45 AM																				
07:45 AM	7	162	19	0	188	17	40	28	0	85	86	205	1	0	292	10	70	13	0	93	658
08:00 AM	9	154	25	0	188	14	45	19	0	78	97	238	0	0	335	11	67	16	0	94	695
08:15 AM	8	153	20	0	181	18	37	31	0	86	91	238	0	0	329	9	84	11	0	104	700
08:30 AM	8	157	17	1	183	31	41	26	0	98	87	193	0	0	280	16	67	20	0	103	664
Total Volume	32	626	81	1	740	80	163	104	0	347	361	874	1	0	1236	46	288	60	0	394	2717
% App. Total	4.3	84.6	10.9	0.1		23.1	47	30	0		29.2	70.7	0.1	0		11.7	73.1	15.2	0		
PHF	.889	.966	.810	.250	.984	.645	.906	.839	.000	.885	.930	.918	.250	.000	.922	.719	.857	.750	.000	.947	.970

File Name : 133243 A Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

Groups Printed- Heavy Vehicles

								Gloups r	milleu- ne	avy venic	162							
		Ma	ssachuset	ts Avenu	le		Albany	Street		Ma	assachuse	tts Avenu	le		Albany	Street		
			From N	lorth			From	East			From S	South			From	West		
S	tart Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Int. Total
07	:00 AM	3	14	2	0	3	4	5	0	7	21	0	0	1	3	5	0	68
07	:15 AM	5	7	0	0	3	4	5	0	4	27	0	0	0	10	4	0	69
07	:30 AM	2	11	2	0	1	5	3	0	4	21	0	0	0	2	5	0	56
07	:45 AM	3	8	1	0	1	4	4	0	9	21	0	0	4	7	3	0	65
	Total	13	40	5	0	8	17	17	0	24	90	0	0	5	22	17	0	258
08	:00 AM	2	12	1	0	2	1	6	0	5	16	0	0	1	6	2	0	54
08	:15 AM	1	15	1	0	2	2	5	0	5	12	0	0	1	5	5	0	54
08	:30 AM	4	14	3	0	2	1	3	0	5	15	0	0	1	8	4	0	60
08	:45 AM	4	15	3	0	1	8	8	0	8	13	0	0	1	12	6	0	79
	Total	11	56	8	0	7	12	22	0	23	56	0	0	4	31	17	0	247
Gran	d Total	24	96	13	0	15	29	39	0	47	146	0	0	9	53	34	0	505
Ap	prch %	18	72.2	9.8	0	18.1	34.9	47	0	24.4	75.6	0	0	9.4	55.2	35.4	0	
-	Total %	4.8	19	2.6	0	3	5.7	7.7	0	9.3	28.9	0	0	1.8	10.5	6.7	0	
	'																	

		Massa	chusetts	Avenue	Э		Al	bany St	reet			Massad	chusetts	Avenue)		Al	bany St	reet		1
		F	rom No	rth			F	From Ea	ast			F	rom So	uth			F	rom We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Anal	ysis Fron	n 07:00 /	AM to 08	8:45 AM	- Peak 1 c	f 1															
Peak Hour fo	or Entir	e Inters	sectior	n Begir	ns at 07:	00 AM															
07:00 AM	3	14	2	0	19	3	4	5	0	12	7	21	0	0	28	1	3	5	0	9	68
07:15 AM	5	7	0	0	12	3	4	5	0	12	4	27	0	0	31	0	10	4	0	14	69
07:30 AM	2	11	2	0	15	1	5	3	0	9	4	21	0	0	25	0	2	5	0	7	56
07:45 AM	3	8	1	0	12	1	4	4	0	9	9	21	0	0	30	4	7	3	0	14	65
Total Volume	13	40	5	0	58	8	17	17	0	42	24	90	0	0	114	5	22	17	0	44	258
% App. Total	22.4	69	8.6	0		19	40.5	40.5	0		21.1	78.9	0	0		11.4	50	38.6	0		
PHF	.650	.714	.625	.000	.763	.667	.850	.850	.000	.875	.667	.833	.000	.000	.919	.313	.550	.850	.000	.786	.935

File Name : 133243 A Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

Groups Printed- Peds and Bicycles Massachusetts Avenue Albany Street Massachusetts Avenue Albany Street From North From East From South From West Start Time Right Thru Peds Right Thru Right Right Thru Peds Int. Total Left Left Peds Thru Left Peds Left 07:00 AM 07:15 AM 07:30 AM 07:45 AM Total 08:00 AM 08:15 AM 08:30 AM 08:45 AM Total Grand Total 97.7 Apprch % 0.3 97.3 1.8 0.4 98.5 2.3 0.3 99.7 0.5 1.2 Total % 0.6 0.1 0.1 30.3 0.1 0.4 19.3 0.3 0.1 22.8

		Massa	chusetts	Avenue	Э		Al	bany St	reet			Massa	chusetts	Avenue	Э		Al	bany St	reet		1
		F	rom No	rth			F	From Ea	ast			F	rom So	uth			F	From We	est		1
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Anal	ysis Fron	n 07:00 /	AM to 08	3:45 AM	- Peak 1 c	of 1															
Peak Hour for Entire Intersection Begins at 08:00 AM																					
08:00 AM	0	0	0	40	40	0	0	0	35	35	0	0	0	26	26	0	0	0	40	40	141
08:15 AM	0	0	0	46	46	0	0	0	37	37	0	0	0	35	35	0	0	0	30	30	148
08:30 AM	0	3	1	45	49	0	0	0	43	43	0	0	0	38	38	0	2	0	46	48	178
08:45 AM	0	0	0	42	42	0	0	0	69	69	0	0	0	23	23	0	0	1	43	44	178
Total Volume	0	3	1	173	177	0	0	0	184	184	0	0	0	122	122	0	2	1	159	162	645
% App. Total	0	1.7	0.6	97.7		0	0	0	100		0	0	0	100		0	1.2	0.6	98.1		
PHF	.000	.250	.250	.940	.903	.000	.000	.000	.667	.667	.000	.000	.000	.803	.803	.000	.250	.250	.864	.844	.906

File Name : 133243 A Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

		Massa	chusetts	Avenue)		Al	bany St	reet			Massa	chusetts	Avenue)		Al	bany St	reet		
		F	rom No	rth			I	From Ea	st			F	rom So	uth			F	From We	est		L
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Anal	ysis Fror	n 07:00 /	AM to 08	3:45 AM -	Peak 1 c	of 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begin	s at 07:	45 AM															
07:45 AM	10	170	20	0	200	18	44	32	0	94	95	226	1	0	322	14	77	16	0	107	723
08:00 AM	11	166	26	0	203	16	46	25	0	87	102	254	0	0	356	12	73	18	0	103	749
08:15 AM	9	168	21	0	198	20	39	36	0	95	96	250	0	0	346	10	89	16	0	115	754
08:30 AM	12	171	20	1	204	33	42	29	0	104	92	208	0	0	300	17	75	24	0	116	724
Total Volume	42	675	87	1	805	87	171	122	0	380	385	938	1	0	1324	53	314	74	0	441	2950
% App. Total	5.2	83.9	10.8	0.1		22.9	45	32.1	0		29.1	70.8	0.1	0		12	71.2	16.8	0		1
PHF	.875	.987	.837	.250	.987	.659	.929	.847	.000	.913	.944	.923	.250	.000	.930	.779	.882	.771	.000	.950	.978
Cars	32	626	81	1	740	80	163	104	0	347	361	874	1	0	1236	46	288	60	0	394	2717
% Cars	76.2	92.7	93.1	100	91.9	92.0	95.3	85.2	0	91.3	93.8	93.2	100	0	93.4	86.8	91.7	81.1	0	89.3	92.1
Heavy Vehicles	10	49	6	0	65	7	8	18	0	33	24	64	0	0	88	7	26	14	0	47	233
% Heavy Vehicles	23.8	7.3	6.9	0	8.1	8.0	4.7	14.8	0	8.7	6.2	6.8	0	0	6.6	13.2	8.3	18.9	0	10.7	7.9

File Name : 133243 AA Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

P.O. Box 301 Berlin, MA 01503 Office: 508.481.3999 Fax: 508.545.1234 Email: datarequests@pdillc.com

	Groups Printed- Cars - Heavy Vehicles Massachusetts Avenue Albany Street Massachusetts Avenue Albany Street																
	Ma	assachuse	tts Avenu	ie		Albany	Street		Ma	assachuse	etts Avenu	le		Albany	Street		
		From N	lorth			From	East			From S	South			From	West		
Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Int. Total
03:30 PM	5	212	11	0	29	97	61	0	60	189	1	0	35	48	11	0	759
03:45 PM	6	218	9	0	24	111	33	0	54	163	0	0	21	33	22	0	694
Total	11	430	20	0	53	208	94	0	114	352	1	0	56	81	33	0	1453
1																	
04:00 PM	9	209	11	0	33	108	47	0	52	188	1	0	40	33	13	0	744
04:15 PM	12	233	7	0	26	97	41	0	47	146	0	0	38	51	17	0	715
04:30 PM	5	200	10	0	30	91	46	0	58	179	0	0	42	55	15	0	731
04:45 PM	6	176	18	0	26	91	45	0	58	167	0	0	35	45	18	0	685
Total	32	818	46	0	115	387	179	0	215	680	1	0	155	184	63	0	2875
1				1				1				'					
05:00 PM	5	227	12	0	30	94	41	0	38	215	0	0	33	42	15	0	752
05:15 PM	7	207	16	0	24	101	39	0	36	137	0	0	41	32	24	0	664
Grand Total	55	1682	94	0	222	790	353	0	403	1384	2	0	285	339	135	0	5744
Apprch %	3	91.9	5.1	0	16.3	57.9	25.9	0	22.5	77.4	0.1	0	37.5	44.7	17.8	0	
Total %	1	29.3	1.6	0	3.9	13.8	6.1	0	7	24.1	0	0	5	5.9	2.4	0	
Cars	41	1616	86	0	209	756	322	0	368	1346	2	0	279	314	118	0	5457
% Cars	74.5	96.1	91.5	0	94.1	95.7	91.2	0	91.3	97.3	100	0	97.9	92.6	87.4	0	95
Heavy Vehicles	14	66	8	0	13	34	31	0	35	38	0	0	6	25	17	0	287
% Heavy Vehicles	25.5	3.9	8.5	0	5.9	4.3	8.8	0	8.7	2.7	0	0	2.1	7.4	12.6	0	5

		Massa	chusetts	Avenue			Albany Street					Massa	chusetts	Avenue	Э						
		F	rom No	rth			I	From Ea	ist			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analy	ysis Fror	n 03:30 l	PM to 05	5:15 PM -	Peak 1 o	f 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begin	s at 03:	30 PM															
03:30 PM	5	212	11	0	228	29	97	61	0	187	60	189	1	0	250	35	48	11	0	94	759
03:45 PM	6	218	9	0	233	24	111	33	0	168	54	163	0	0	217	21	33	22	0	76	694
04:00 PM	9	209	11	0	229	33	108	47	0	188	52	188	1	0	241	40	33	13	0	86	744
04:15 PM	12	233	7	0	252	26	97	41	0	164	47	146	0	0	193	38	51	17	0	106	715
Total Volume	32	872	38	0	942	112	413	182	0	707	213	686	2	0	901	134	165	63	0	362	2912
% App. Total	3.4	92.6	4	0		15.8	58.4	25.7	0		23.6	76.1	0.2	0		37	45.6	17.4	0		
PHF	.667	.936	.864	.000	.935	.848	.930	.746	.000	.940	.888	.907	.500	.000	.901	.838	.809	.716	.000	.854	.959
Cars	26	835	34	0	895	105	388	163	0	656	196	660	2	0	858	132	154	55	0	341	2750
% Cars	81.3	95.8	89.5	0	95.0	93.8	93.9	89.6	0	92.8	92.0	96.2	100	0	95.2	98.5	93.3	87.3	0	94.2	94.4
Heavy Vehicles	6	37	4	0	47	7	25	19	0	51	17	26	0	0	43	2	11	8	0	21	162
% Heavy Vehicles	18.8	4.2	10.5	0	5.0	6.3	6.1	10.4	0	7.2	8.0	3.8	0	0	4.8	1.5	6.7	12.7	0	5.8	5.6

File Name : 133243 AA Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

							Gro	ups Printe	d- Cars								
	Ma	assachusett	s Avenu	ie		Albany	Street		Ma	assachuset	tts Avenue	Э		Albany	Street		
		From No	orth			From	East			From S	South			From \	Nest		
Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Int. Total
03:30 PM	4	204	11	0	27	89	53	0	56	182	1	0	35	46	10	0	718
03:45 PM	5	206	8	0	22	103	29	0	48	153	0	0	21	31	19	0	645
Total	9	410	19	0	49	192	82	0	104	335	1	0	56	77	29	0	1363
04:00 PM	8	202	10	0	32	102	45	0	49	181	1	0	39	29	11	0	709
04:15 PM	9	223	5	0	24	94	36	0	43	144	0	0	37	48	15	0	678
04:30 PM	2	189	10	0	27	86	44	0	54	177	0	0	41	53	12	0	695
04:45 PM	4	168	16	0	25	89	40	0	53	162	0	0	34	40	16	0	647
Total	23	782	41	0	108	371	165	0	199	664	1	0	151	170	54	0	2729
05:00 PM	4	221	12	0	29	92	38	0	34	211	0	0	32	37	13	0	723
05:15 PM	5	203	14	0	23	101	37	0	31	136	0	0	40	30	22	0	642
Grand Total	41	1616	86	0	209	756	322	0	368	1346	2	0	279	314	118	0	5457
Apprch %	2.4	92.7	4.9	0	16.2	58.7	25	0	21.4	78.4	0.1	0	39.2	44.2	16.6	0	
Total %	0.8	29.6	1.6	0	3.8	13.9	5.9	0	6.7	24.7	0	0	5.1	5.8	2.2	0	

		Massa	chusetts	Avenue)		Al	bany St	reet			Massa	chusetts	Avenue	Э		Al	bany St	reet		
		F	From No	rth			F	From Ea	ast			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Anal	ysis Fron	n 03:30 l	PM to 05	:15 PM ·	- Peak 1 c	f 1															
Peak Hour for	or Entir	e Inter	sectior	n Begin	ns at 03:	30 PM															
03:30 PM	4	204	11	0	219	27	89	53	0	169	56	182	1	0	239	35	46	10	0	91	718
03:45 PM	5	206	8	0	219	22	103	29	0	154	48	153	0	0	201	21	31	19	0	71	645
04:00 PM	8	202	10	0	220	32	102	45	0	179	49	181	1	0	231	39	29	11	0	79	709
04:15 PM	9	223	5	0	237	24	94	36	0	154	43	144	0	0	187	37	48	15	0	100	678
Total Volume	26	835	34	0	895	105	388	163	0	656	196	660	2	0	858	132	154	55	0	341	2750
% App. Total	2.9	93.3	3.8	0		16	59.1	24.8	0		22.8	76.9	0.2	0		38.7	45.2	16.1	0		
PHF	.722	.936	.773	.000	.944	.820	.942	.769	.000	.916	.875	.907	.500	.000	.897	.846	.802	.724	.000	.853	.958

File Name : 133243 AA Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

P.O. Box 301 Berlin, MA 01503 Office: 508.481.3999 Fax: 508.545.1234 Email: datarequests@pdillc.com

Groups Printed- Heavy Vehicles Massachusetts Avenue Albany Street Massachusetts Avenue Albany Street																	
	Ma	ssachuset	ts Avenu	ie		Albany	Street		Ma	assachuset	tts Avenu	ie		Albany	Street		
		From N	orth			From	East			From S	outh			From \	West		
Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Int. Total
03:30 PM	1	8	0	0	2	8	8	0	4	7	0	0	0	2	1	0	41
03:45 PM	1	12	1	0	2	8	4	0	6	10	0	0	0	2	3	0	49
Total	2	20	1	0	4	16	12	0	10	17	0	0	0	4	4	0	90
04:00 PM	1	7	1	0	1	6	2	0	3	7	0	0	1	4	2	0	35
04:15 PM	3	10	2	0	2	3	5	0	4	2	0	0	1	3	2	0	37
04:30 PM	3	11	0	0	3	5	2	0	4	2	0	0	1	2	3	0	36
04:45 PM	2	8	2	0	1	2	5	0	5	5	0	0	1	5	2	0	38
Total	9	36	5	0	7	16	14	0	16	16	0	0	4	14	9	0	146
05:00 PM	1	6	0	0	1	2	3	0	4	4	0	0	1	5	2	0	29
05:15 PM	2	4	2	0	1	0	2	0	5	1	0	0	1	2	2	0	22
Grand Total	14	66	8	0	13	34	31	0	35	38	0	0	6	25	17	0	287
Apprch %	15.9	75	9.1	0	16.7	43.6	39.7	0	47.9	52.1	0	0	12.5	52.1	35.4	0	
Total %	4.9	23	2.8	0	4.5	11.8	10.8	0	12.2	13.2	0	0	2.1	8.7	5.9	0	

		Massa	chusetts	Avenue	Э	Albany Street Massachusetts Avenue Albany Street							reet								
		F	rom No	rth			I	From Ea	st			F	rom So	uth			F	From W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Anal	ysis Fror	n 03:30 l	PM to 05	5:15 PM	- Peak 1 c	of 1															
Peak Hour for	or Entir	e Inter	sectior	n Begir	ns at 03:	30 PM															
03:30 PM	1	8	0	0	9	2	8	8	0	18	4	7	0	0	11	0	2	1	0	3	41
03:45 PM	1	12	1	0	14	2	8	4	0	14	6	10	0	0	16	0	2	3	0	5	49
04:00 PM	1	7	1	0	9	1	6	2	0	9	3	7	0	0	10	1	4	2	0	7	35
04:15 PM	3	10	2	0	15	2	3	5	0	10	4	2	0	0	6	1	3	2	0	6	37
Total Volume	6	37	4	0	47	7	25	19	0	51	17	26	0	0	43	2	11	8	0	21	162
% App. Total	12.8	78.7	8.5	0		13.7	49	37.3	0		39.5	60.5	0	0		9.5	52.4	38.1	0		
PHF	.500	.771	.500	.000	.783	.875	.781	.594	.000	.708	.708	.650	.000	.000	.672	.500	.688	.667	.000	.750	.827

File Name : 133243 AA Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

P.O. Box 301 Berlin, MA 01503 Office: 508.481.3999 Fax: 508.545.1234 Email: datarequests@pdillc.com

Groups Printed- Peds and Bicycles Massachusetts Avenue Albany Street																	
	Ma	ssachuset	ts Avenue	Э		Albany S	Street		Ma	ssachuset	ts Avenue	9		Albany S	street		
		From N	lorth			From E	ast			From S	outh			From W	/est		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
03:30 PM	1	0	0	37	0	0	1	45	0	0	0	41	0	0	1	36	162
03:45 PM	0	0	0	33	0	0	0	45	0	0	0	22	0	0	0	38	138
Total	1	0	0	70	0	0	1	90	0	0	0	63	0	0	1	74	300
04:00 PM	0	1	0	38	0	0	1	47	0	0	0	15	0	0	0	32	134
04:15 PM	0	0	0	44	0	0	2	54	0	2	0	24	0	0	0	32	158
04:30 PM	0	1	0	43	0	0	0	56	0	0	0	25	0	0	0	39	164
04:45 PM	0	2	0	54	1	0	0	34	0	0	0	45	0	0	0	56	192
Total	0	4	0	179	1	0	3	191	0	2	0	109	0	0	0	159	648
05:00 PM	0	2	0	50	0	1	0	39	0	3	0	33	0	0	0	49	177
05:15 PM	0	3	0	45	1	1	1	43	0	5	0	32	0	0	0	35	166
Grand Total	1	9	0	344	2	2	5	363	0	10	0	237	0	0	1	317	1291
Apprch %	0.3	2.5	0	97.2	0.5	0.5	1.3	97.6	0	4	0	96	0	0	0.3	99.7	
Total %	0.1	0.7	0	26.6	0.2	0.2	0.4	28.1	0	0.8	0	18.4	0	0	0.1	24.6	

		Massa	chusetts	Avenue	Э		AI	bany St	reet			Massa	chusetts	Avenue	9		Al	bany St	reet		
		F	rom No	rth			F	From Ea	st			F	rom So	uth			F	rom We	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 03:30 F	PM to 05	:15 PM	- Peak 1 c	of 1															
Peak Hour fo	or Entire	e Inters	sectior	n Begir	ns at 04:	30 PM															
04:30 PM	0	1	0	43	44	0	0	0	56	56	0	0	0	25	25	0	0	0	39	39	164
04:45 PM	0	2	0	54	56	1	0	0	34	35	0	0	0	45	45	0	0	0	56	56	192
05:00 PM	0	2	0	50	52	0	1	0	39	40	0	3	0	33	36	0	0	0	49	49	177
05:15 PM	0	3	0	45	48	1	1	1	43	46	0	5	0	32	37	0	0	0	35	35	166
Total Volume	0	8	0	192	200	2	2	1	172	177	0	8	0	135	143	0	0	0	179	179	699
% App. Total	0	4	0	96		1.1	1.1	0.6	97.2		0	5.6	0	94.4		0	0	0	100		
PHF	.000	.667	.000	.889	.893	.500	.500	.250	.768	.790	.000	.400	.000	.750	.794	.000	.000	.000	.799	.799	.910

File Name : 133243 AA Site Code : 2012165. Start Date : 3/5/2013 Page No : 1

		Massa	chusetts	Avenue	•		Al	bany St	reet			Massa	chusetts	Avenue	Э		Al	bany St	reet		
		F	rom No	rth			I	From Ea	st			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 03:30 l	PM to 05	5:15 PM -	Peak 1 o	f 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begin	s at 03:	30 PM															
03:30 PM	5	212	11	0	228	29	97	61	0	187	60	189	1	0	250	35	48	11	0	94	759
03:45 PM	6	218	9	0	233	24	111	33	0	168	54	163	0	0	217	21	33	22	0	76	694
04:00 PM	9	209	11	0	229	33	108	47	0	188	52	188	1	0	241	40	33	13	0	86	744
04:15 PM	12	233	7	0	252	26	97	41	0	164	47	146	0	0	193	38	51	17	0	106	715
Total Volume	32	872	38	0	942	112	413	182	0	707	213	686	2	0	901	134	165	63	0	362	2912
% App. Total	3.4	92.6	4	0		15.8	58.4	25.7	0		23.6	76.1	0.2	0		37	45.6	17.4	0		
PHF	.667	.936	.864	.000	.935	.848	.930	.746	.000	.940	.888	.907	.500	.000	.901	.838	.809	.716	.000	.854	.959
Cars	26	835	34	0	895	105	388	163	0	656	196	660	2	0	858	132	154	55	0	341	2750
% Cars	81.3	95.8	89.5	0	95.0	93.8	93.9	89.6	0	92.8	92.0	96.2	100	0	95.2	98.5	93.3	87.3	0	94.2	94.4
Heavy Vehicles	6	37	4	0	47	7	25	19	0	51	17	26	0	0	43	2	11	8	0	21	162
% Heavy Vehicles	18.8	4.2	10.5	0	5.0	6.3	6.1	10.4	0	7.2	8.0	3.8	0	0	4.8	1.5	6.7	12.7	0	5.8	5.6

File Name : 133243 D Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

						Gro	oups Print	ted- Cars -	Heavy Ve	hicles							
	Ma	assachuse	tts Avenu	ie		Harrison	Avenue		Ma	assachuse	tts Avenu	ie		Harrison	Avenue		
		From N	lorth			From	East			From S	South			From \	West		
Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Int. Total
07:00 AM	17	131	11	0	4	38	11	0	21	213	30	0	10	37	6	0	529
07:15 AM	28	168	23	0	4	25	5	0	40	213	20	1	7	56	7	0	597
07:30 AM	21	171	33	0	19	49	15	0	34	217	17	0	8	65	13	0	662
07:45 AM	27	173	21	0	18	28	15	0	36	223	7	0	11	63	10	0	632
Total	93	643	88	0	45	140	46	0	131	866	74	1	36	221	36	0	2420
08:00 AM	32	186	23	0	10	41	14	0	46	215	15	0	6	73	9	0	670
08:15 AM	26	175	24	0	12	43	13	0	63	209	10	0	7	64	15	0	661
08:30 AM	30	165	22	0	6	38	19	0	55	199	17	0	13	60	10	0	634
08:45 AM	27	157	27	0	12	30	20	0	40	224	19	0	7	60	11	0	634
Total	115	683	96	0	40	152	66	0	204	847	61	0	33	257	45	0	2599
				,													
Grand Total	208	1326	184	0	85	292	112	0	335	1713	135	1	69	478	81	0	5019
Apprch %	12.1	77.2	10.7	0	17.4	59.7	22.9	0	15.3	78.4	6.2	0	11	76.1	12.9	0	
Total %	4.1	26.4	3.7	0	1.7	5.8	2.2	0	6.7	34.1	2.7	0	1.4	9.5	1.6	0	
Cars	199	1211	179	0	82	251	104	0	321	1522	131	1	61	459	75	0	4596
% Cars	95.7	91.3	97.3	0	96.5	86	92.9	0	95.8	88.8	97	100	88.4	96	92.6	0	91.6
Heavy Vehicles	9	115	5	0	3	41	8	0	14	191	4	0	8	19	6	0	423
% Heavy Vehicles	4.3	8.7	2.7	0	3.5	14	7.1	0	4.2	11.2	3	0	11.6	4	7.4	0	8.4

		Massa	chusetts	Avenue			Har	rison Av	enue			Massa	chusetts	Avenue	9		Har	rison Av	/enue		
		F	rom No	rth				From Ea	ist			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis Fror	n 07:00 /	AM to 08	3:45 AM -	Peak 1 c	f 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begin	s at 07:	30 AM															
07:30 AM	21	171	33	0	225	19	49	15	0	83	34	217	17	0	268	8	65	13	0	86	662
07:45 AM	27	173	21	0	221	18	28	15	0	61	36	223	7	0	266	11	63	10	0	84	632
08:00 AM	32	186	23	0	241	10	41	14	0	65	46	215	15	0	276	6	73	9	0	88	670
08:15 AM	26	175	24	0	225	12	43	13	0	68	63	209	10	0	282	7	64	15	0	86	661
Total Volume	106	705	101	0	912	59	161	57	0	277	179	864	49	0	1092	32	265	47	0	344	2625
% App. Total	11.6	77.3	11.1	0		21.3	58.1	20.6	0		16.4	79.1	4.5	0		9.3	77	13.7	0		
PHF	.828	.948	.765	.000	.946	.776	.821	.950	.000	.834	.710	.969	.721	.000	.968	.727	.908	.783	.000	.977	.979
Cars	101	656	100	0	857	57	140	55	0	252	172	776	47	0	995	28	257	43	0	328	2432
% Cars	95.3	93.0	99.0	0	94.0	96.6	87.0	96.5	0	91.0	96.1	89.8	95.9	0	91.1	87.5	97.0	91.5	0	95.3	92.6
Heavy Vehicles	5	49	1	0	55	2	21	2	0	25	7	88	2	0	97	4	8	4	0	16	193
% Heavy Vehicles	4.7	7.0	1.0	0	6.0	3.4	13.0	3.5	0	9.0	3.9	10.2	4.1	0	8.9	12.5	3.0	8.5	0	4.7	7.4

File Name : 133243 D Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

	Groups Printed- Cars																
	Ma	assachuset	tts Avenu	ie		Harrison	Avenue		Ma	assachuse	tts Avenue	9		Harrison	Avenue		
		From N	lorth			From	East			From S	South			From	West		
Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Int. Total
07:00 AM	17	114	10	0	4	32	11	0	21	186	28	0	8	37	6	0	474
07:15 AM	25	154	23	0	3	20	4	0	37	182	20	1	7	54	7	0	537
07:30 AM	21	161	33	0	18	44	14	0	32	194	16	0	6	63	13	0	615
07:45 AM	24	165	20	0	18	23	14	0	33	199	7	0	10	62	9	0	584
Total	87	594	86	0	43	119	43	0	123	761	71	1	31	216	35	0	2210
08:00 AM	31	170	23	0	9	36	14	0	46	194	14	0	6	69	7	0	619
08:15 AM	25	160	24	0	12	37	13	0	61	189	10	0	6	63	14	0	614
08:30 AM	30	149	20	0	6	34	16	0	53	176	17	0	13	55	9	0	578
08:45 AM	26	138	26	0	12	25	18	0	38	202	19	0	5	56	10	0	575
Total	112	617	93	0	39	132	61	0	198	761	60	0	30	243	40	0	2386
Grand Total	199	1211	179	0	82	251	104	0	321	1522	131	1	61	459	75	0	4596
Apprch %	12.5	76.2	11.3	0	18.8	57.4	23.8	0	16.3	77.1	6.6	0.1	10.3	77.1	12.6	0	
Total %	4.3	26.3	3.9	0	1.8	5.5	2.3	0	7	33.1	2.9	0	1.3	10	1.6	0	
				,												'	

		Massa	chusetts	Avenue)		Har	rison Av	enue			Massa	chusetts	s Avenue	Э		Har	rison Av	renue		
		F	From No	rth			I	From Ea	st			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis Fror	n 07:00 /	AM to 08	3:45 AM	- Peak 1 d	of 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begir	ns at 07:	30 AM															
07:30 AM	21	161	33	0	215	18	44	14	0	76	32	194	16	0	242	6	63	13	0	82	615
07:45 AM	24	165	20	0	209	18	23	14	0	55	33	199	7	0	239	10	62	9	0	81	584
08:00 AM	31	170	23	0	224	9	36	14	0	59	46	194	14	0	254	6	69	7	0	82	619
08:15 AM	25	160	24	0	209	12	37	13	0	62	61	189	10	0	260	6	63	14	0	83	614
Total Volume	101	656	100	0	857	57	140	55	0	252	172	776	47	0	995	28	257	43	0	328	2432
% App. Total	11.8	76.5	11.7	0		22.6	55.6	21.8	0		17.3	78	4.7	0		8.5	78.4	13.1	0		
PHF	.815	.965	.758	.000	.956	.792	.795	.982	.000	.829	.705	.975	.734	.000	.957	.700	.931	.768	.000	.988	.982

File Name : 133243 D Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

Groups Printed- Heavy Vehicles

Г		Ma	issachusett	ts Avenu	е		Harrison	Avenue		Ma	assachuse	etts Avenu	е		Harrison	Avenue		
			From N	orth			From	East			From S	South			From	West		
	Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Int. Total
	07:00 AM	0	17	1	0	0	6	0	0	0	27	2	0	2	0	0	0	55
	07:15 AM	3	14	0	0	1	5	1	0	3	31	0	0	0	2	0	0	60
	07:30 AM	0	10	0	0	1	5	1	0	2	23	1	0	2	2	0	0	47
	07:45 AM	3	8	1	0	0	5	1	0	3	24	0	0	1	1	1	0	48
	Total	6	49	2	0	2	21	3	0	8	105	3	0	5	5	1	0	210
	08:00 AM	1	16	0	0	1	5	0	0	0	21	1	0	0	4	2	0	51
	08:15 AM	1	15	0	0	0	6	0	0	2	20	0	0	1	1	1	0	47
	08:30 AM	0	16	2	0	0	4	3	0	2	23	0	0	0	5	1	0	56
	08:45 AM	1	19	1	0	0	5	2	0	2	22	0	0	2	4	1	0	59
	Total	3	66	3	0	1	20	5	0	6	86	1	0	3	14	5	0	213
	Grand Total	9	115	5	0	3	41	8	0	14	191	4	0	8	19	6	0	423
	Apprch %	7	89.1	3.9	0	5.8	78.8	15.4	0	6.7	91.4	1.9	0	24.2	57.6	18.2	0	
	Total %	2.1	27.2	1.2	0	0.7	9.7	1.9	0	3.3	45.2	0.9	0	1.9	4.5	1.4	0	
	1																	

		Massachusetts Avenue Harrison Avenue										Massa	chusetts	Avenue	9		Har	rison Av	/enue		1
		F	From No	rth			F	From Ea	ast			F	rom So	uth			F	From W	est	ſ	
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Anal	ysis Fron	n 07:00 /	AM to 08	:45 AM	- Peak 1 c	of 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begir	ns at 08:	00 AM															
08:00 AM	1	16	0	0	17	1	5	0	0	6	0	21	1	0	22	0	4	2	0	6	51
08:15 AM	1	15	0	0	16	0	6	0	0	6	2	20	0	0	22	1	1	1	0	3	47
08:30 AM	0	16	2	0	18	0	4	3	0	7	2	23	0	0	25	0	5	1	0	6	56
08:45 AM	1	19	1	0	21	0	5	2	0	7	2	22	0	0	24	2	4	1	0	7	59
Total Volume	3	66	3	0	72	1	20	5	0	26	6	86	1	0	93	3	14	5	0	22	213
% App. Total	4.2	91.7	4.2	0		3.8	76.9	19.2	0		6.5	92.5	1.1	0		13.6	63.6	22.7	0		L
PHF	.750	.868	.375	.000	.857	.250	.833	.417	.000	.929	.750	.935	.250	.000	.930	.375	.700	.625	.000	.786	.903

File Name : 133243 D Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

Groups Printed- Peds and Bicycles Massachusetts Avenue Harrison Avenue Massachusetts Avenue Harrison Avenue From North From East From South From West Start Time Right Thru Peds Right Thru Right Peds Right Thru Peds Int. Total Left Left Peds Thru Left Left 07:00 AM 07:15 AM 07:30 AM 07:45 AM Total 08:00 AM 08:15 AM 08:30 AM 08:45 AM Total Grand Total Apprch % 88.7 94.9 7.3 0.4 1.2 98.4 0.6 4.6 4.3 94.7 Total % 0.6 1.1 13.9 0.1 0.3 25.7 0.2 1.7 34.8 0.9 0.2 20.5

		Massa	chusetts	Avenue	e		Har	rison Av	/enue			Massa	chusetts	Avenue	e		Har	rison Av	renue		
		F	rom No	rth			F	From Ea	ast			F	rom So	uth			F	From We	est	ſ	
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analy	sis Fron	n 07:00 /	AM to 08	3:45 AM	- Peak 1 c	of 1															
Peak Hour fo	or Entire	e Inters	sectior	n Begir	ns at 07:	45 AM															
07:45 AM	0	2	3	21	26	0	2	0	32	34	0	1	0	47	48	0	1	1	26	28	136
08:00 AM	0	0	1	14	15	1	0	0	38	39	0	3	0	59	62	0	2	0	24	26	142
08:15 AM	0	0	1	23	24	0	0	0	32	32	0	3	0	37	40	0	0	0	37	37	133
08:30 AM	0	2	5	17	24	0	0	0	37	37	0	0	0	59	59	0	2	0	32	34	154
Total Volume	0	4	10	75	89	1	2	0	139	142	0	7	0	202	209	0	5	1	119	125	565
% App. Total	0	4.5	11.2	84.3		0.7	1.4	0	97.9		0	3.3	0	96.7		0	4	0.8	95.2		
PHF	.000	.500	.500	.815	.856	.250	.250	.000	.914	.910	.000	.583	.000	.856	.843	.000	.625	.250	.804	.845	.917

File Name : 133243 D Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

		Massa	chusetts	Avenue	•		Har	rison Av	enue			Massa	chusetts	Avenue	9		Har	rison Av	enue		
		F	From No	rth			I	From Ea	ast			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 07:00 /	AM to 08	3:45 AM -	Peak 1 c	of 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begin	s at 07:	30 AM															
07:30 AM	21	171	33	0	225	19	49	15	0	83	34	217	17	0	268	8	65	13	0	86	662
07:45 AM	27	173	21	0	221	18	28	15	0	61	36	223	7	0	266	11	63	10	0	84	632
08:00 AM	32	186	23	0	241	10	41	14	0	65	46	215	15	0	276	6	73	9	0	88	670
08:15 AM	26	175	24	0	225	12	43	13	0	68	63	209	10	0	282	7	64	15	0	86	661
Total Volume	106	705	101	0	912	59	161	57	0	277	179	864	49	0	1092	32	265	47	0	344	2625
% App. Total	11.6	77.3	11.1	0		21.3	58.1	20.6	0		16.4	79.1	4.5	0		9.3	77	13.7	0		
PHF	.828	.948	.765	.000	.946	.776	.821	.950	.000	.834	.710	.969	.721	.000	.968	.727	.908	.783	.000	.977	.979
Cars	101	656	100	0	857	57	140	55	0	252	172	776	47	0	995	28	257	43	0	328	2432
% Cars	95.3	93.0	99.0	0	94.0	96.6	87.0	96.5	0	91.0	96.1	89.8	95.9	0	91.1	87.5	97.0	91.5	0	95.3	92.6
Heavy Vehicles	5	49	1	0	55	2	21	2	0	25	7	88	2	0	97	4	8	4	0	16	193
% Heavy Vehicles	4.7	7.0	1.0	0	6.0	3.4	13.0	3.5	0	9.0	3.9	10.2	4.1	0	8.9	12.5	3.0	8.5	0	4.7	7.4

File Name : 133243 DD Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

Groups Printed- Cars - Heavy Vehicles Massachusetts Avenue Harrison Avenue Massachusetts Avenue Harrison Avenue From North From East From South From West Start Time Right U-Turn Right Right Left U-Turn Right Left U-Turn Int. Total Thru Left Thru Left U-Turn Thru Thru 03:30 PM 03:45 PM Total 04:00 PM 04:15 PM 04:30 PM 04:45 PM Total 05:00 PM 05:15 PM Grand Total 13.4 15.6 Apprch % 81.5 0.1 13.4 63.9 22.7 16.1 74.7 9.2 68.9 15.6 Total % 5.1 1.9 2.1 10.1 3.6 5.6 25.9 3.2 1.8 7.9 1.8 Cars % Cars 94.9 95.3 94.8 95.3 93.7 96.7 97.1 95.8 95.6 95.5 94.9 97.8 95.4 Heavy Vehicles 2.2 5.1 4.7 5.2 4.7 6.3 3.3 2.9 4.2 4.4 4.5 5.1 4.6 % Heavy Vehicles

		Massa	chusetts	Avenue			Har	rison Av	renue			Massa	chusetts	Avenue)		Har	rison Av	/enue		
		F	rom No	rth			I	From Ea	ist			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analy	sis Fron	n 03:30 l	PM to 05	5:15 PM -	Peak 1 o	of 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begin	s at 04:	15 PM															
04:15 PM	30	213	13	1	257	18	66	30	0	114	29	155	12	0	196	11	43	13	0	67	634
04:30 PM	31	182	14	0	227	22	58	16	0	96	31	159	21	0	211	13	54	14	0	81	615
04:45 PM	25	176	9	0	210	15	57	25	0	97	34	166	27	0	227	10	39	13	0	62	596
05:00 PM	39	205	10	0	254	5	73	15	0	93	45	182	23	0	250	14	58	12	0	84	681
Total Volume	125	776	46	1	948	60	254	86	0	400	139	662	83	0	884	48	194	52	0	294	2526
% App. Total	13.2	81.9	4.9	0.1		15	63.5	21.5	0		15.7	74.9	9.4	0		16.3	66	17.7	0		
PHF	.801	.911	.821	.250	.922	.682	.870	.717	.000	.877	.772	.909	.769	.000	.884	.857	.836	.929	.000	.875	.927
Cars	118	737	44	1	900	57	235	84	0	376	136	639	81	0	856	45	184	51	0	280	2412
% Cars	94.4	95.0	95.7	100	94.9	95.0	92.5	97.7	0	94.0	97.8	96.5	97.6	0	96.8	93.8	94.8	98.1	0	95.2	95.5
Heavy Vehicles	7	39	2	0	48	3	19	2	0	24	3	23	2	0	28	3	10	1	0	14	114
% Heavy Vehicles	5.6	5.0	4.3	0	5.1	5.0	7.5	2.3	0	6.0	2.2	3.5	2.4	0	3.2	6.3	5.2	1.9	0	4.8	4.5

File Name : 133243 DD Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

Groups Printed- Cars Massachusetts Avenue Harrison Avenue Massachusetts Avenue Harrison Avenue From North From East From South From West U-Turn Start Time Right Right Left U-Turn Right Left U-Turn Right Thru Left U-Turn Int. Total Thru Left Thru Thru 03:30 PM 03:45 PM Total 04:00 PM 04:15 PM 04:30 PM 04:45 PM Total 05:00 PM 05:15 PM Grand Total 15.6 13.5 63.3 74.6 68.5 15.9 Apprch % 13.3 81.6 0.1 23.2 16.3 9.2 Total % 5.1 1.9 2.1 9.9 3.6 5.7 26.1 3.2 1.8 7.8 1.8

		Massa	chusetts	Avenue	9		Har	rison Av	renue			Massa	chusetts	Avenue	Э		Har	rison Av	/enue		
		F	From No	rth			I	From Ea	ist			F	rom So	uth			F	From W	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Anal	ysis Fror	n 03:30 l	PM to 05	:15 PM	- Peak 1 c	of 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begir	ns at 04:	15 PM															
04:15 PM	29	204	13	1	247	17	60	29	0	106	28	149	12	0	189	9	39	13	0	61	603
04:30 PM	27	169	14	0	210	20	53	15	0	88	31	152	20	0	203	13	49	14	0	76	577
04:45 PM	25	163	9	0	197	15	51	25	0	91	32	162	26	0	220	10	38	12	0	60	568
05:00 PM	37	201	8	0	246	5	71	15	0	91	45	176	23	0	244	13	58	12	0	83	664
Total Volume	118	737	44	1	900	57	235	84	0	376	136	639	81	0	856	45	184	51	0	280	2412
% App. Total	13.1	81.9	4.9	0.1		15.2	62.5	22.3	0		15.9	74.6	9.5	0		16.1	65.7	18.2	0		
PHF	.797	.903	.786	.250	.911	.713	.827	.724	.000	.887	.756	.908	.779	.000	.877	.865	.793	.911	.000	.843	.908

File Name : 133243 DD Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

Groups Printed- Heavy Vehicles

							Joupsi	milleu- me	avy venic	63							
	Ma	assachuset	ts Avenu	ie		Harrison /	Avenue		Ma	assachuse	tts Avenu	ie		Harrison	Avenue		
		From N	orth			From E	East			From S	South			From \	Nest		
Start Time	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Right	Thru	Left	U-Turn	Int. Total
03:30 PM	3	8	0	0	0	2	1	0	1	11	0	0	0	4	0	0	30
03:45 PM	1	12	2	0	0	6	0	0	3	10	2	0	1	3	1	0	41
Total	4	20	2	0	0	8	1	0	4	21	2	0	1	7	1	0	71
				,													
04:00 PM	2	7	0	0	2	2	2	0	0	7	3	0	0	0	0	0	25
04:15 PM	1	9	0	0	1	6	1	0	1	6	0	0	2	4	0	0	31
04:30 PM	4	13	0	0	2	5	1	0	0	7	1	0	0	5	0	0	38
04:45 PM	0	13	0	0	0	6	0	0	2	4	1	0	0	1	1	0	28
Total	7	42	0	0	5	19	4	0	3	24	5	0	2	10	1	0	122
05:00 PM	2	4	2	0	0	2	0	0	0	6	0	0	1	0	0	0	17
05:15 PM	0	7	1	0	0	3	1	0	1	3	0	0	0	3	0	0	19
Grand Total	13	73	5	0	5	32	6	0	8	54	7	0	4	20	2	0	229
Apprch %	14.3	80.2	5.5	0	11.6	74.4	14	0	11.6	78.3	10.1	0	15.4	76.9	7.7	0	
Total %	5.7	31.9	2.2	0	2.2	14	2.6	0	3.5	23.6	3.1	0	1.7	8.7	0.9	0	

		Massa	chusetts	Avenue	Э		Har	rison Av	/enue			Massa	chusetts	Avenue	Э		Har	rison Av	/enue		
		F	rom No	rth			F	From Ea	ast			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Anal	ysis Fror	n 03:30 l	PM to 05	5:15 PM	- Peak 1 c	of 1															
Peak Hour fo	or Entir	e Inter	sectior	n Begir	ns at 03:	45 PM															
03:45 PM	1	12	2	0	15	0	6	0	0	6	3	10	2	0	15	1	3	1	0	5	41
04:00 PM	2	7	0	0	9	2	2	2	0	6	0	7	3	0	10	0	0	0	0	0	25
04:15 PM	1	9	0	0	10	1	6	1	0	8	1	6	0	0	7	2	4	0	0	6	31
04:30 PM	4	13	0	0	17	2	5	1	0	8	0	7	1	0	8	0	5	0	0	5	38
Total Volume	8	41	2	0	51	5	19	4	0	28	4	30	6	0	40	3	12	1	0	16	135
% App. Total	15.7	80.4	3.9	0		17.9	67.9	14.3	0		10	75	15	0		18.8	75	6.2	0		
PHF	.500	.788	.250	.000	.750	.625	.792	.500	.000	.875	.333	.750	.500	.000	.667	.375	.600	.250	.000	.667	.823

File Name : 133243 DD Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

P.O. Box 301 Berlin, MA 01503 Office: 508.481.3999 Fax: 508.545.1234 Email: datarequests@pdillc.com

						Gr	oups Prir	nted- Ped	s and Bicyc	les							
	Mas	ssachuset	ts Avenue)		Harrison A	venue		Ma	ssachuset	ts Avenue	;		Harrison A	venue		
		From N	orth			From E	ast			From S	outh			From W	est		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Int. Total
03:30 PM	0	0	0	19	1	1	0	42	0	0	0	47	0	0	0	25	135
03:45 PM	0	0	0	28	0	1	0	32	0	4	0	69	0	0	0	26	160
Total	0	0	0	47	1	2	0	74	0	4	0	116	0	0	0	51	295
04:00 PM	0	1	0	10	1	0	0	33	0	0	0	32	0	0	0	29	106
04:15 PM	1	0	0	24	3	2	0	35	0	3	0	43	0	0	0	23	134
04:30 PM	0	1	0	21	0	1	0	49	0	0	0	48	0	0	0	34	154
04:45 PM	0	1	0	27	2	3	0	28	0	3	0	43	0	0	0	23	130
Total	1	3	0	82	6	6	0	145	0	6	0	166	0	0	0	109	524
05:00 PM	0	3	0	14	2	0	0	30	0	5	0	55	0	0	0	29	138
05:15 PM	0	0	0	24	0	1	0	35	0	3	0	32	0	1	0	31	127
Grand Total	1	6	0	167	9	9	0	284	0	18	0	369	0	1	0	220	1084
Apprch %	0.6	3.4	0	96	3	3	0	94	0	4.7	0	95.3	0	0.5	0	99.5	
Total %	0.1	0.6	0	15.4	0.8	0.8	0	26.2	0	1.7	0	34	0	0.1	0	20.3	

		Massad	chusetts	Avenue	Э		Har	rison Av	/enue			Massa	chusetts	Avenue	Э		Har	rison Av	renue		
		F	rom No	rth			I	From Ea	ast			F	rom So	uth			F	From We	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 03:30 F	PM to 05	5:15 PM	- Peak 1 c	of 1															
Peak Hour fo	or Entir	e Inters	sectior	n Begir	ns at 04:	15 PM															
04:15 PM	1	0	0	24	25	3	2	0	35	40	0	3	0	43	46	0	0	0	23	23	134
04:30 PM	0	1	0	21	22	0	1	0	49	50	0	0	0	48	48	0	0	0	34	34	154
04:45 PM	0	1	0	27	28	2	3	0	28	33	0	3	0	43	46	0	0	0	23	23	130
05:00 PM	0	3	0	14	17	2	0	0	30	32	0	5	0	55	60	0	0	0	29	29	138
Total Volume	1	5	0	86	92	7	6	0	142	155	0	11	0	189	200	0	0	0	109	109	556
% App. Total	1.1	5.4	0	93.5		4.5	3.9	0	91.6		0	5.5	0	94.5		0	0	0	100		
PHF	.250	.417	.000	.796	.821	.583	.500	.000	.724	.775	.000	.550	.000	.859	.833	.000	.000	.000	.801	.801	.903

File Name : 133243 DD Site Code : 2012165 Start Date : 3/5/2013 Page No : 1

		Massa	chusetts	Avenue	•		Har	rison Av	enue			Massa	chusetts	Avenue	э		Har	rison Av	/enue		
		F	rom No	rth				From Ea	ast			F	rom So	uth			F	rom We	est		
Start Time	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Int. Total
Peak Hour Analy	ysis Fror	n 03:30 F	PM to 05	:15 PM -	Peak 1 o	of 1															
Peak Hour fo	or Entir	e Inters	sectior	n Begin	s at 04:	15 PM															
04:15 PM	30	213	13	1	257	18	66	30	0	114	29	155	12	0	196	11	43	13	0	67	634
04:30 PM	31	182	14	0	227	22	58	16	0	96	31	159	21	0	211	13	54	14	0	81	615
04:45 PM	25	176	9	0	210	15	57	25	0	97	34	166	27	0	227	10	39	13	0	62	596
05:00 PM	39	205	10	0	254	5	73	15	0	93	45	182	23	0	250	14	58	12	0	84	681
Total Volume	125	776	46	1	948	60	254	86	0	400	139	662	83	0	884	48	194	52	0	294	2526
% App. Total	13.2	81.9	4.9	0.1		15	63.5	21.5	0		15.7	74.9	9.4	0		16.3	66	17.7	0		
PHF	.801	.911	.821	.250	.922	.682	.870	.717	.000	.877	.772	.909	.769	.000	.884	.857	.836	.929	.000	.875	.927
Cars	118	737	44	1	900	57	235	84	0	376	136	639	81	0	856	45	184	51	0	280	2412
% Cars	94.4	95.0	95.7	100	94.9	95.0	92.5	97.7	0	94.0	97.8	96.5	97.6	0	96.8	93.8	94.8	98.1	0	95.2	95.5
Heavy Vehicles	7	39	2	0	48	3	19	2	0	24	3	23	2	0	28	3	10	1	0	14	114
% Heavy Vehicles	5.6	5.0	4.3	0	5.1	5.0	7.5	2.3	0	6.0	2.2	3.5	2.4	0	3.2	6.3	5.2	1.9	0	4.8	4.5

					Groups	Printed- Car	s - Trucks						
	No	rthampton St			Albany St		(Crosstown Dr			Albany St		
]	From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
07:00 AM	12	5	8	2	39	6	2	14	4	39	46	11	188
07:15 AM	13	2	12	4	39	8	3	14	4	38	43	10	190
07:30 AM	7	8	16	11	49	5	3	13	8	44	83	12	259
07:45 AM	12	13	20	4	35	13	1	20	2	41	85	17	263
Total	44	28	56	21	162	32	9	61	18	162	257	50	900
08:00 AM	7	10	11	7	48	13	2	26	10	61	82	18	295
08:15 AM	14	2	18	9	48	17	7	15	2	56	94	16	298
08:30 AM	18	7	15	6	54	12	1	17	8	61	70	13	282
08:45 AM	13	9	28	5	49	13	0	5	6	58	87	13	286
Total	52	28	72	27	199	55	10	63	26	236	333	60	1161
Grand Total	96	56	128	48	361	87	19	124	44	398	590	110	2061
Apprch %	34.3	20	45.7	9.7	72.8	17.5	10.2	66.3	23.5	36.2	53.7	10	
Total %	4.7	2.7	6.2	2.3	17.5	4.2	0.9	6	2.1	19.3	28.6	5.3	
Cars	91	56	125	47	334	84	18	124	41	390	551	99	1960
% Cars	94.8	100	97.7	97.9	92.5	96.6	94.7	100	93.2	98	93.4	90	95.1
Trucks	5	0	3	1	27	3	1	0	3	8	39	11	101
% Trucks	5.2	0	2.3	2.1	7.5	3.4	5.3	0	6.8	2	6.6	10	4.9

		Northan	npton St			Alba	ny St			Crosst	own Dr			Alba	ny St		
		From	North			Fron	1 East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 07:00 AN	A to 08:45 A	AM - Peak	1 of 1													
Peak Hour for Entire In	ntersection B	egins at 08:	00 AM														
08:00 AM	7	10	11	28	7	48	13	68	2	26	10	38	61	82	18	161	295
08:15 AM	14	2	18	34	9	48	17	74	7	15	2	24	56	94	16	166	298
08:30 AM	18	7	15	40	6	54	12	72	1	17	8	26	61	70	13	144	282
08:45 AM	13	9	28	50	5	49	13	67	0	5	6	11	58	87	13	158	286
Total Volume	52	28	72	152	27	199	55	281	10	63	26	99	236	333	60	629	1161
% App. Total	34.2	18.4	47.4		9.6	70.8	19.6		10.1	63.6	26.3		37.5	52.9	9.5		
PHF	.722	.700	.643	.760	.750	.921	.809	.949	.357	.606	.650	.651	.967	.886	.833	.947	.974
Cars	51	28	70	149	27	186	53	266	9	63	23	95	232	312	53	597	1107
% Cars	98.1	100	97.2	98.0	100	93.5	96.4	94.7	90.0	100	88.5	96.0	98.3	93.7	88.3	94.9	95.3
Trucks	1	0	2	3	0	13	2	15	1	0	3	4	4	21	7	32	54
% Trucks	1.9	0	2.8	2.0	0	6.5	3.6	5.3	10.0	0	11.5	4.0	1.7	6.3	11.7	5.1	4.7

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy File Name : 11032001 Site Code : 11032001 Start Date : 8/8/2013 Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

reak mour for Bach mp	protein Degn	115 ut.														
	08:00 AM				08:00 AM				07:45 AM				08:00 AM			
+0 mins.	7	10	11	28	7	48	13	68	1	20	2	23	61	82	18	161
+15 mins.	14	2	18	34	9	48	17	74	2	26	10	38	56	94	16	166
+30 mins.	18	7	15	40	6	54	12	72	7	15	2	24	61	70	13	144
+45 mins.	13	9	28	50	5	49	13	67	1	17	8	26	58	87	13	158
Total Volume	52	28	72	152	27	199	55	281	11	78	22	111	236	333	60	629
% App. Total	34.2	18.4	47.4		9.6	70.8	19.6		9.9	70.3	19.8		37.5	52.9	9.5	
PHF	.722	.700	.643	.760	.750	.921	.809	.949	.393	.750	.550	.730	.967	.886	.833	.947
Cars	51	28	70	149	27	186	53	266	10	78	19	107	232	312	53	597
% Cars	98.1	100	97.2	98	100	93.5	96.4	94.7	90.9	100	86.4	96.4	98.3	93.7	88.3	94.9
Trucks	1	0	2	3	0	13	2	15	1	0	3	4	4	21	7	32

					Gr	oups Printed	- Cars						
	No	rthampton St			Albany St			Crosstown Dr			Albany St		
	H	From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
07:00 AM	11	5	8	2	34	6	2	14	4	38	43	9	176
07:15 AM	12	2	12	4	38	8	3	14	4	37	39	10	183
07:30 AM	6	8	16	10	44	4	3	13	8	43	80	11	246
07:45 AM	11	13	19	4	32	13	1	20	2	40	77	16	248
Total	40	28	55	20	148	31	9	61	18	158	239	46	853
08:00 AM	7	10	11	7	44	13	1	26	8	59	75	16	277
08:15 AM	13	2	17	9	45	17	7	15	2	55	87	15	284
08:30 AM	18	7	14	6	49	11	1	17	7	60	68	9	267
08:45 AM	13	9	28	5	48	12	0	5	6	58	82	13	279
Total	51	28	70	27	186	53	9	63	23	232	312	53	1107
Grand Total	91	56	125	47	334	84	18	124	41	390	551	99	1960
Apprch %	33.5	20.6	46	10.1	71.8	18.1	9.8	67.8	22.4	37.5	53	9.5	
Total %	4.6	2.9	6.4	2.4	17	4.3	0.9	6.3	2.1	19.9	28.1	5.1	

		Northan	npton St			Alba	ny St			Crosste	own Dr			Alba	ny St		
		From	North			Fron	i East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 07:00 AN	A to 08:45 A	AM - Peak	1 of 1													
Peak Hour for Entire In	ntersection B	egins at 08:	00 AM														
08:00 AM	7	10	11	28	7	44	13	64	1	26	8	35	59	75	16	150	277
08:15 AM	13	2	17	32	9	45	17	71	7	15	2	24	55	87	15	157	284
08:30 AM	18	7	14	39	6	49	11	66	1	17	7	25	60	68	9	137	267
08:45 AM	13	9	28	50	5	48	12	65	0	5	6	11	58	82	13	153	279
Total Volume	51	28	70	149	27	186	53	266	9	63	23	95	232	312	53	597	1107
% App. Total	34.2	18.8	47		10.2	69.9	19.9		9.5	66.3	24.2		38.9	52.3	8.9		
PHF	.708	.700	.625	.745	.750	.949	.779	.937	.321	.606	.719	.679	.967	.897	.828	.951	.974

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy File Name : 11032001 Site Code : 11032001 Start Date : 8/8/2013 Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	08:00 AM				08:00 AM				07:45 AM				08:00 AM			
+0 mins.	7	10	11	28	7	44	13	64	1	20	2	23	59	75	16	150
+15 mins.	13	2	17	32	9	45	17	71	1	26	8	35	55	87	15	157
+30 mins.	18	7	14	39	6	49	11	66	7	15	2	24	60	68	9	137
+45 mins.	13	9	28	50	5	48	12	65	1	17	7	25	58	82	13	153
Total Volume	51	28	70	149	27	186	53	266	10	78	19	107	232	312	53	597
% App. Total	34.2	18.8	47		10.2	69.9	19.9		9.3	72.9	17.8		38.9	52.3	8.9	
PHF	.708	.700	.625	.745	.750	.949	.779	.937	.357	.750	.594	.764	.967	.897	.828	.951

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy

 File Name : 11032001

 Site Code : 11032001

 Start Date : 8/8/2013

 Page No : 3

					Gro	ups Printed-	Trucks						
	No	rthampton St			Albany St			Crosstown Dr			Albany St		
	1	From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
07:00 AM	1	0	0	0	5	0	0	0	0	1	3	2	12
07:15 AM	1	0	0	0	1	0	0	0	0	1	4	0	7
07:30 AM	1	0	0	1	5	1	0	0	0	1	3	1	13
07:45 AM	1	0	1	0	3	0	0	0	0	1	8	1	15
Total	4	0	1	1	14	1	0	0	0	4	18	4	47
08:00 AM	0	0	0	0	4	0	1	0	2	2	7	2	18
08:15 AM	1	0	1	0	3	0	0	0	0	1	7	1	14
08:30 AM	0	0	1	0	5	1	0	0	1	1	2	4	15
08:45 AM	0	0	0	0	1	1	0	0	0	0	5	0	7
Total	1	0	2	0	13	2	1	0	3	4	21	7	54
Grand Total	5	0	3	1	27	3	1	0	3	8	39	11	101
Apprch %	62.5	0	37.5	3.2	87.1	9.7	25	0	75	13.8	67.2	19	
Total %	5	0	3	1	26.7	3	1	0	3	7.9	38.6	10.9	

		Northam	pton St			Alba	ny St			Crosst	own Dr			Alba	ny St		
		From 1	North			From	ı East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 07:00 AN	1 to 08:45 A	M - Peak	1 of 1													
Peak Hour for Entire In	ntersection Be	egins at 07:4	45 AM														
07:45 AM	1	0	1	2	0	3	0	3	0	0	0	0	1	8	1	10	15
08:00 AM	0	0	0	0	0	4	0	4	1	0	2	3	2	7	2	11	18
08:15 AM	1	0	1	2	0	3	0	3	0	0	0	0	1	7	1	9	14
08:30 AM	0	0	1	1	0	5	1	6	0	0	1	1	1	2	4	7	15
Total Volume	2	0	3	5	0	15	1	16	1	0	3	4	5	24	8	37	62
% App. Total	40	0	60		0	93.8	6.2		25	0	75		13.5	64.9	21.6		
PHF	.500	.000	.750	.625	.000	.750	.250	.667	.250	.000	.375	.333	.625	.750	.500	.841	.861

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy File Name : 11032001 Site Code : 11032001 Start Date : 8/8/2013 Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	07:00 AM				07:30 AM				07:45 AM				07:45 AM			
+0 mins.	1	0	0	1	1	5	1	7	0	0	0	0	1	8	1	10
+15 mins.	1	0	0	1	0	3	0	3	1	0	2	3	2	7	2	11
+30 mins.	1	0	0	1	0	4	0	4	0	0	0	0	1	7	1	9
+45 mins.	1	0	1	2	0	3	0	3	0	0	1	1	1	2	4	7
Total Volume	4	0	1	5	1	15	1	17	1	0	3	4	5	24	8	37
% App. Total	80	0	20		5.9	88.2	5.9		25	0	75		13.5	64.9	21.6	
PHF	1.000	.000	.250	.625	.250	.750	.250	.607	.250	.000	.375	.333	.625	.750	.500	.841

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy

 File Name : 11032001

 Site Code : 11032001

 Start Date : 8/8/2013

 Page No : 3

								Group	os Printed-	<u>Bikes Pe</u>	ds								
		Northam	pton St			Alban	y St			Crosstov	vn Dr			Alban	y St				
		From N	lorth			From	East			From S	outh			From V	West				
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
07:00 AM	0	0	0	6	1	0	0	5	0	0	0	2	2	0	0	4	17	3	20
07:15 AM	0	0	0	5	0	1	0	13	0	0	0	8	2	0	0	7	33	3	36
07:30 AM	0	1	0	11	0	0	0	6	0	0	0	3	0	2	0	9	29	3	32
07:45 AM	0	0	0	11	0	1	0	17	0	1	0	13	0	4	0	12	53	6	59
Total	0	1	0	33	1	2	0	41	0	1	0	26	4	6	0	32	132	15	147
08:00 AM	0	1	0	28	0	0	0	15	0	0	0	4	0	0	0	15	62	1	63
08:15 AM	0	2	0	85	0	0	0	10	0	0	0	7	0	2	0	16	118	4	122
08:30 AM	0	1	0	15	1	1	0	13	0	0	0	2	0	0	0	13	43	3	46
08:45 AM	0	1	1	10	1	1	0	10	0	1	0	25	1	1	0	11	56	7	63
Total	0	5	1	138	2	2	0	48	0	1	0	38	1	3	0	55	279	15	294
Grand Total	0	6	1	171	3	4	0	89	0	2	0	64	5	9	0	87	411	30	441
Apprch %	0	85.7	14.3		42.9	57.1	0		0	100	0		35.7	64.3	0				
Total %	0	20	3.3		10	13.3	0		0	6.7	0		16.7	30	0		93.2	6.8	

		Northam	pton St			Alba	ny St			Cross	own Dr			Alba	ny St		
		From 1	North			From	East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 07:00 AN	1 to 08:45 A	M - Peak	1 of 1			-				-				-		
Peak Hour for Entire In	ntersection Be	egins at 07:0	00 AM														
07:00 AM	0	0	0	0	1	0	0	1	0	0	0	0	2	0	0	2	3
07:15 AM	0	0	0	0	0	1	0	1	0	0	0	0	2	0	0	2	3
07:30 AM	0	1	0	1	0	0	0	0	0	0	0	0	0	2	0	2	3
07:45 AM	0	0	0	0	0	1	0	1	0	1	0	1	0	4	0	4	6
Total Volume	0	1	0	1	1	2	0	3	0	1	0	1	4	6	0	10	15
% App. Total	0	100	0		33.3	66.7	0		0	100	0		40	60	0		
PHF	.000	.250	.000	.250	.250	.500	.000	.750	.000	.250	.000	.250	.500	.375	.000	.625	.625

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy File Name : 11032001 Site Code : 11032001 Start Date : 8/8/2013 Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	08:00 AM				08:00 AM				07:00 AM				07:00 AM			
+0 mins.	0	1	0	1	0	0	0	0	0	0	0	0	2	0	0	2
+15 mins.	0	2	0	2	0	0	0	0	0	0	0	0	2	0	0	2
+30 mins.	0	1	0	1	1	1	0	2	0	0	0	0	0	2	0	2
+45 mins.	0	1	1	2	1	1	0	2	0	1	0	1	0	4	0	4
Total Volume	0	5	1	6	2	2	0	4	0	1	0	1	4	6	0	10
% App. Total	0	83.3	16.7		50	50	0		0	100	0		40	60	0	
PHF	.000	.625	.250	.750	.500	.500	.000	.500	.000	.250	.000	.250	.500	.375	.000	.625

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy

 File Name : 11032001

 Site Code : 11032001

 Start Date : 8/8/2013

 Page No : 3

	N	orthampton St			Albany St		(Crosstown Dr			Albany St		
		From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
04:00 PM	12	2	47	4	95	14	16	7	33	25	46	6	307
04:15 PM	13	7	51	3	97	12	6	7	14	44	46	5	305
04:30 PM	19	6	40	3	85	13	12	4	19	31	39	7	278
04:45 PM	24	4	36	0	97	14	4	11	28	37	47	5	307
Total	68	19	174	10	374	53	38	29	94	137	178	23	1197
05:00 PM	24	0	41	3	134	17	14	13	27	32	41	6	352
05:15 PM	16	9	45	3	100	9	6	10	19	44	54	5	320
05:30 PM	19	4	43	2	98	7	12	16	20	33	33	8	295
05:45 PM	14	5	55	2	91	8	9	9	14	33	33	1	274
Total	73	18	184	10	423	41	41	48	80	142	161	20	1241
						1							
Grand Total	141	37	358	20	797	94	79	77	174	279	339	43	2438
Apprch %	26.3	6.9	66.8	2.2	87.5	10.3	23.9	23.3	52.7	42.2	51.3	6.5	
Total %	5.8	1.5	14.7	0.8	32.7	3.9	3.2	3.2	7.1	11.4	13.9	1.8	
Cars	139	36	355	20	771	93	79	77	174	276	309	34	2363
% Cars	98.6	97.3	99.2	100	96.7	98.9	100	100	100	98.9	91.2	79.1	96.9
Trucks	2	1	3	0	26	1	0	0	0	3	30	9	75
% Trucks	1.4	2.7	0.8	0	3.3	1.1	0	0	0	1.1	8.8	20.9	3.1

		Northan	npton St			Alba	ny St			Crosst	own Dr			Alba	ny St		
		From	North			From	East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fro	om 04:00 PM	1 to 05:45 F	PM - Peak 1	of 1													
Peak Hour for Entire In	tersection Be	egins at 04:	45 PM														
04:45 PM	24	4	36	64	0	97	14	111	4	11	28	43	37	47	5	89	307
05:00 PM	24	0	41	65	3	134	17	154	14	13	27	54	32	41	6	79	352
05:15 PM	16	9	45	70	3	100	9	112	6	10	19	35	44	54	5	103	320
05:30 PM	19	4	43	66	2	98	7	107	12	16	20	48	33	33	8	74	295
Total Volume	83	17	165	265	8	429	47	484	36	50	94	180	146	175	24	345	1274
% App. Total	31.3	6.4	62.3		1.7	88.6	9.7		20	27.8	52.2		42.3	50.7	7		
PHF	.865	.472	.917	.946	.667	.800	.691	.786	.643	.781	.839	.833	.830	.810	.750	.837	.905
Cars	82	16	163	261	8	417	47	472	36	50	94	180	145	160	19	324	1237
% Cars	98.8	94.1	98.8	98.5	100	97.2	100	97.5	100	100	100	100	99.3	91.4	79.2	93.9	97.1
Trucks	1	1	2	4	0	12	0	12	0	0	0	0	1	15	5	21	37
% Trucks	1.2	5.9	1.2	1.5	0	2.8	0	2.5	0	0	0	0	0.7	8.6	20.8	6.1	2.9

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy File Name : 11032001 Site Code : 11032001 Start Date : 8/8/2013 Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

real riour for Baenrig	protein Degn	10 u ti														
	05:00 PM				04:45 PM				04:45 PM				04:30 PM			
+0 mins.	24	0	41	65	0	97	14	111	4	11	28	43	31	39	7	77
+15 mins.	16	9	45	70	3	134	17	154	14	13	27	54	37	47	5	89
+30 mins.	19	4	43	66	3	100	9	112	6	10	19	35	32	41	6	79
+45 mins.	14	5	55	74	2	98	7	107	12	16	20	48	44	54	5	103
Total Volume	73	18	184	275	8	429	47	484	36	50	94	180	144	181	23	348
% App. Total	26.5	6.5	66.9		1.7	88.6	9.7		20	27.8	52.2		41.4	52	6.6	
PHF	.760	.500	.836	.929	.667	.800	.691	.786	.643	.781	.839	.833	.818	.838	.821	.845
Cars	72	17	182	271	8	417	47	472	36	50	94	180	143	168	19	330
% Cars	98.6	94.4	98.9	98.5	100	97.2	100	97.5	100	100	100	100	99.3	92.8	82.6	94.8
Trucks	1	1	2	4	0	12	0	12	0	0	0	0	1	13	4	18

					Gr	oups Printed	- Cars						
	No	rthampton St			Albany St		(Crosstown Dr			Albany St		
]	From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
04:00 PM	12	2	47	4	92	14	16	7	33	24	41	4	296
04:15 PM	13	7	50	3	92	11	6	7	14	43	42	4	292
04:30 PM	18	6	40	3	83	13	12	4	19	31	37	6	272
04:45 PM	24	4	36	0	93	14	4	11	28	37	42	3	296
Total	67	19	173	10	360	52	38	29	94	135	162	17	1156
05:00 PM	23	0	39	3	130	17	14	13	27	31	38	6	341
05:15 PM	16	8	45	3	98	9	6	10	19	44	51	4	313
05:30 PM	19	4	43	2	96	7	12	16	20	33	29	6	287
05:45 PM	14	5	55	2	87	8	9	9	14	33	29	1	266
Total	72	17	182	10	411	41	41	48	80	141	147	17	1207
Grand Total	139	36	355	20	771	93	79	77	174	276	309	34	2363
Apprch %	26.2	6.8	67	2.3	87.2	10.5	23.9	23.3	52.7	44.6	49.9	5.5	
Total %	5.9	1.5	15	0.8	32.6	3.9	3.3	3.3	7.4	11.7	13.1	1.4	

		Northam	pton St			Alba	ny St			Crosst	own Dr			Alba	ny St		
		From 1	North			From	East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 04:00 PM	to 05:45 P	M - Peak	1 of 1													
Peak Hour for Entire In	ntersection Be	egins at 04:4	45 PM														
04:45 PM	24	4	36	64	0	93	14	107	4	11	28	43	37	42	3	82	296
05:00 PM	23	0	39	62	3	130	17	150	14	13	27	54	31	38	6	75	341
05:15 PM	16	8	45	69	3	98	9	110	6	10	19	35	44	51	4	99	313
05:30 PM	19	4	43	66	2	96	7	105	12	16	20	48	33	29	6	68	287
Total Volume	82	16	163	261	8	417	47	472	36	50	94	180	145	160	19	324	1237
% App. Total	31.4	6.1	62.5		1.7	88.3	10		20	27.8	52.2		44.8	49.4	5.9		
PHF	.854	.500	.906	.946	.667	.802	.691	.787	.643	.781	.839	.833	.824	.784	.792	.818	.907

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy File Name : 11032001 Site Code : 11032001 Start Date : 8/8/2013 Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	05:00 PM				04:45 PM				04:45 PM				04:30 PM			
+0 mins.	23	0	39	62	0	93	14	107	4	11	28	43	31	37	6	74
+15 mins.	16	8	45	69	3	130	17	150	14	13	27	54	37	42	3	82
+30 mins.	19	4	43	66	3	98	9	110	6	10	19	35	31	38	6	75
+45 mins.	14	5	55	74	2	96	7	105	12	16	20	48	44	51	4	99
Total Volume	72	17	182	271	8	417	47	472	36	50	94	180	143	168	19	330
% App. Total	26.6	6.3	67.2		1.7	88.3	10		20	27.8	52.2		43.3	50.9	5.8	
PHF	.783	.531	.827	.916	.667	.802	.691	.787	.643	.781	.839	.833	.813	.824	.792	.833

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy

 File Name : 11032001

 Site Code : 11032001

 Start Date : 8/8/2013

 Page No : 3

					Gro	ups Printed-	Trucks						
	No	orthampton St			Albany St			Crosstown Dr			Albany St		
]	From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
04:00 PM	0	0	0	0	3	0	0	0	0	1	5	2	11
04:15 PM	0	0	1	0	5	1	0	0	0	1	4	1	13
04:30 PM	1	0	0	0	2	0	0	0	0	0	2	1	6
04:45 PM	0	0	0	0	4	0	0	0	0	0	5	2	11
Total	1	0	1	0	14	1	0	0	0	2	16	6	41
05:00 PM	1	0	2	0	4	0	0	0	0	1	3	0	11
05:15 PM	0	1	0	0	2	0	0	0	0	0	3	1	7
05:30 PM	0	0	0	0	2	0	0	0	0	0	4	2	8
05:45 PM	0	0	0	0	4	0	0	0	0	0	4	0	8
Total	1	1	2	0	12	0	0	0	0	1	14	3	34
Grand Total	2	1	3	0	26	1	0	0	0	3	30	9	75
Apprch %	33.3	16.7	50	0	96.3	3.7	0	0	0	7.1	71.4	21.4	
Total %	2.7	1.3	4	0	34.7	1.3	0	0	0	4	40	12	

		Northam	pton St			Alba	any St			Cross	own Dr			Alba	ny St		
		From 1	North			From	n East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 04:00 PM	to 05:45 P	M - Peak	1 of 1													
Peak Hour for Entire In	ntersection Be	egins at 04:0	00 PM														
04:00 PM	0	0	0	0	0	3	0	3	0	0	0	0	1	5	2	8	11
04:15 PM	0	0	1	1	0	5	1	6	0	0	0	0	1	4	1	6	13
04:30 PM	1	0	0	1	0	2	0	2	0	0	0	0	0	2	1	3	6
04:45 PM	0	0	0	0	0	4	0	4	0	0	0	0	0	5	2	7	11
Total Volume	1	0	1	2	0	14	1	15	0	0	0	0	2	16	6	24	41
% App. Total	50	0	50		0	93.3	6.7		0	0	0		8.3	66.7	25		
PHF	.250	.000	.250	.500	.000	.700	.250	.625	.000	.000	.000	.000	.500	.800	.750	.750	.788

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy File Name : 11032001 Site Code : 11032001 Start Date : 8/8/2013 Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	04:15 PM				04:15 PM				04:00 PM				04:00 PM			
+0 mins.	0	0	1	1	0	5	1	6	0	0	0	0	1	5	2	8
+15 mins.	1	0	0	1	0	2	0	2	0	0	0	0	1	4	1	6
+30 mins.	0	0	0	0	0	4	0	4	0	0	0	0	0	2	1	3
+45 mins.	1	0	2	3	0	4	0	4	0	0	0	0	0	5	2	7
Total Volume	2	0	3	5	0	15	1	16	0	0	0	0	2	16	6	24
% App. Total	40	0	60		0	93.8	6.2		0	0	0		8.3	66.7	25	
PHF	.500	.000	.375	.417	.000	.750	.250	.667	.000	.000	.000	.000	.500	.800	.750	.750

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy

 File Name : 11032001

 Site Code : 11032001

 Start Date : 8/8/2013

 Page No : 3

	Groups Printed- Bikes Peds														1				
		Northamp	oton St			Alban	y St			Crosstov	vn Dr			Alban	y St				
		From N	orth			From 1	East		From South					From V	West				
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
04:00 PM	0	1	0	22	0	0	0	8	0	2	0	15	0	1	1	4	49	5	54
04:15 PM	0	1	0	9	0	1	0	8	0	0	1	1	1	1	0	3	21	5	26
04:30 PM	0	0	2	39	0	1	0	28	0	0	0	8	0	0	0	0	75	3	78
04:45 PM	2	0	1	29	0	0	1	9	0	0	0	16	0	1	1	6	60	6	66
Total	2	2	3	99	0	2	1	53	0	2	1	40	1	3	2	13	205	19	224
05:00 PM	0	0	0	28	0	0	0	15	2	1	0	12	1	1	0	7	62	5	67
05:15 PM	1	1	0	26	1	3	0	13	0	0	0	5	0	2	0	2	46	8	54
05:30 PM	0	0	0	46	1	0	0	10	0	2	0	5	0	2	0	3	64	5	69
05:45 PM	0	1	0	24	0	1	0	3	0	0	0	5	0	1	0	4	36	3	39
Total	1	2	0	124	2	4	0	41	2	3	0	27	1	6	0	16	208	21	229
Grand Total	3	4	3	223	2	6	1	94	2	5	1	67	2	9	2	29	413	40	453
Apprch %	30	40	30		22.2	66.7	11.1		25	62.5	12.5		15.4	69.2	15.4				
Total %	7.5	10	7.5		5	15	2.5		5	12.5	2.5		5	22.5	5		91.2	8.8	

		Northam	pton St			Albaı	ny St			Crosst	own Dr						
		From N	North					From	South		From West						
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fron	n 04:00 PM	to 05:45 Pl	M - Peak	1 of 1													
Peak Hour for Entire Inte	rsection Be	gins at 04:4	5 PM														
04:45 PM	2	0	1	3	0	0	1	1	0	0	0	0	0	1	1	2	6
05:00 PM	0	0	0	0	0	0	0	0	2	1	0	3	1	1	0	2	5
05:15 PM	1	1	0	2	1	3	0	4	0	0	0	0	0	2	0	2	8
05:30 PM	0	0	0	0	1	0	0	1	0	2	0	2	0	2	0	2	5
Total Volume	3	1	1	5	2	3	1	6	2	3	0	5	1	6	1	8	24
% App. Total	60	20	20		33.3	50	16.7		40	60	0		12.5	75	12.5		
PHF	.375	.250	.250	.417	.500	.250	.250	.375	.250	.375	.000	.417	.250	.750	.250	1.00	.750

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy File Name : 11032001 Site Code : 11032001 Start Date : 8/8/2013 Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	04:00 PM				04:30 PM				04:45 PM				04:45 PM			
+0 mins.	0	1	0	1	0	1	0	1	0	0	0	0	0	1	1	2
+15 mins.	0	1	0	1	0	0	1	1	2	1	0	3	1	1	0	2
+30 mins.	0	0	2	2	0	0	0	0	0	0	0	0	0	2	0	2
+45 mins.	2	0	1	3	1	3	0	4	0	2	0	2	0	2	0	2
Total Volume	2	2	3	7	1	4	1	6	2	3	0	5	1	6	1	8
% App. Total	28.6	28.6	42.9		16.7	66.7	16.7		40	60	0		12.5	75	12.5	
PHF	.250	.500	.375	.583	.250	.333	.250	.375	.250	.375	.000	.417	.250	.750	.250	1.000

N/S Street : Northampton St/Crosstown Dr E/W Street: Albany Street City/State : Boston, MA Weather : Cloudy

 File Name : 11032001

 Site Code : 11032001

 Start Date : 8/8/2013

 Page No : 3

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

	Groups Printed- Cars - Trucks Northampton St Harrison Ave Northampton St Harrison Ave														
	No	rthampton St		Ha	rrison Ave		Nor	thampton St		Н	arrison Ave				
	I	From North		F	rom East		F	rom South		1	From West				
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total		
07:00 AM	0	0	0	21	27	10	9	28	14	7	37	9	162		
07:15 AM	0	0	0	21	41	11	12	31	14	0	43	12	185		
07:30 AM	0	0	0	27	41	8	13	27	4	7	80	14	221		
07:45 AM	0	0	0	29	47	6	19	33	15	8	57	14	228		
Total	0	0	0	98	156	35	53	119	47	22	217	49	796		
08:00 AM	0	0	0	23	50	8	14	38	19	10	76	9	247		
08:15 AM	0	0	0	24	33	16	6	39	17	10	94	10	249		
08:30 AM	0	0	0	23	35	16	6	40	18	12	83	13	246		
08:45 AM	0	0	0	27	54	6	15	44	11	15	73	11	256		
Total	0	0	0	97	172	46	41	161	65	47	326	43	998		
Grand Total	0	0	0	195	328	81	94	280	112	69	543	92	1794		
Apprch %	0	0	0	32.3	54.3	13.4	19.3	57.6	23	9.8	77.1	13.1			
Total %	0	0	0	10.9	18.3	4.5	5.2	15.6	6.2	3.8	30.3	5.1			
Cars	0	0	0	191	298	78	92	269	109	65	523	91	1716		
% Cars	0	0	0	97.9	90.9	96.3	97.9	96.1	97.3	94.2	96.3	98.9	95.7		
Trucks	0	0	0	4	30	3	2	11	3	4	20	1	78		
% Trucks	0	0	0	2.1	9.1	3.7	2.1	3.9	2.7	5.8	3.7	1.1	4.3		

		Northan	npton St			Harris			Northan	npton St							
		From	North			From	East			From	South						
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 07:00 Al	M to 08:45 A	AM - Peak 1	1 of 1													
Peak Hour for Entire In	ntersection B	Begins at 08:	00 AM														
08:00 AM	0	0	0	0	23	50	8	81	14	38	19	71	10	76	9	95	247
08:15 AM	0	0	0	0	24	33	16	73	6	39	17	62	10	94	10	114	249
08:30 AM	0	0	0	0	23	35	16	74	6	40	18	64	12	83	13	108	246
08:45 AM	0	0	0	0	27	54	6	87	15	44	11	70	15	73	11	99	256
Total Volume	0	0	0	0	97	172	46	315	41	161	65	267	47	326	43	416	998
% App. Total	0	0	0		30.8	54.6	14.6		15.4	60.3	24.3		11.3	78.4	10.3		
PHF	.000	.000	.000	.000	.898	.796	.719	.905	.683	.915	.855	.940	.783	.867	.827	.912	.975
Cars	0	0	0	0	95	158	45	298	39	157	63	259	44	316	43	403	960
% Cars	0	0	0	0	97.9	91.9	97.8	94.6	95.1	97.5	96.9	97.0	93.6	96.9	100	96.9	96.2
Trucks	0	0	0	0	2	14	1	17	2	4	2	8	3	10	0	13	38
% Trucks	0	0	0	0	2.1	8.1	2.2	5.4	4.9	2.5	3.1	3.0	6.4	3.1	0	3.1	3.8
N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032002

 Site Code
 : 11032002

 Start Date
 : 8/8/2013

 Page No
 : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	07:00 AM				08:00 AM				08:00 AM				08:00 AM			
+0 mins.	0	0	0	0	23	50	8	81	14	38	19	71	10	76	9	95
+15 mins.	0	0	0	0	24	33	16	73	6	39	17	62	10	94	10	114
+30 mins.	0	0	0	0	23	35	16	74	6	40	18	64	12	83	13	108
+45 mins.	0	0	0	0	27	54	6	87	15	44	11	70	15	73	11	99
Total Volume	0	0	0	0	97	172	46	315	41	161	65	267	47	326	43	416
% App. Total	0	0	0		30.8	54.6	14.6		15.4	60.3	24.3		11.3	78.4	10.3	
PHF	.000	.000	.000	.000	.898	.796	.719	.905	.683	.915	.855	.940	.783	.867	.827	.912
Cars	0	0	0	0	95	158	45	298	39	157	63	259	44	316	43	403
% Cars	0	0	0	0	97.9	91.9	97.8	94.6	95.1	97.5	96.9	97	93.6	96.9	100	96.9
Trucks	0	0	0	0	2	14	1	17	2	4	2	8	3	10	0	13

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

					G	roups Printed	- Cars						
	N	orthampton St			Harrison Ave		N	orthampton S	t]	Harrison Ave		
		From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
07:00 AM	0	0	0	21	23	9	9	27	14	7	34	9	153
07:15 AM	0	0	0	21	37	11	12	30	14	0	41	12	178
07:30 AM	0	0	0	26	36	8	13	26	4	7	77	13	210
07:45 AM	0	0	0	28	44	5	19	29	14	7	55	14	215
Total	0	0	0	96	140	33	53	112	46	21	207	48	756
08:00 AM	0	0	0	23	45	8	14	36	19	9	71	9	234
08:15 AM	0	0	0	23	32	16	6	38	15	9	91	10	240
08:30 AM	0	0	0	22	32	15	6	40	18	11	81	13	238
08:45 AM	0	0	0	27	49	6	13	43	11	15	73	11	248
Total	0	0	0	95	158	45	39	157	63	44	316	43	960
Grand Total	0	0	0	191	298	78	92	269	109	65	523	91	1716
Apprch %	0	0	0	33.7	52.6	13.8	19.6	57.2	23.2	9.6	77	13.4	
Total %	0	0	0	11.1	17.4	4.5	5.4	15.7	6.4	3.8	30.5	5.3	

		Northam	pton St			Harris	on Ave			Northa	mpton St			Harris	on Ave		
		From 1	North			From	1 East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 07:00 AN	1 to 08:45 A	AM - Peak	1 of 1													
Peak Hour for Entire In	ntersection Be	egins at 08:0	00 AM														
08:00 AM	0	0	0	0	23	45	8	76	14	36	19	69	9	71	9	89	234
08:15 AM	0	0	0	0	23	32	16	71	6	38	15	59	9	91	10	110	240
08:30 AM	0	0	0	0	22	32	15	69	6	40	18	64	11	81	13	105	238
08:45 AM	0	0	0	0	27	49	6	82	13	43	11	67	15	73	11	99	248
Total Volume	0	0	0	0	95	158	45	298	39	157	63	259	44	316	43	403	960
% App. Total	0	0	0		31.9	53	15.1		15.1	60.6	24.3		10.9	78.4	10.7		
PHF	.000	.000	.000	.000	.880	.806	.703	.909	.696	.913	.829	.938	.733	.868	.827	.916	.968

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032002

 Site Code
 : 11032002

 Start Date
 : 8/8/2013

 Page No
 : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	07:00 AM				08:00 AM				08:00 AM				08:00 AM			
+0 mins.	0	0	0	0	23	45	8	76	14	36	19	69	9	71	9	89
+15 mins.	0	0	0	0	23	32	16	71	6	38	15	59	9	91	10	110
+30 mins.	0	0	0	0	22	32	15	69	6	40	18	64	11	81	13	105
+45 mins.	0	0	0	0	27	49	6	82	13	43	11	67	15	73	11	99
Total Volume	0	0	0	0	95	158	45	298	39	157	63	259	44	316	43	403
% App. Total	0	0	0		31.9	53	15.1		15.1	60.6	24.3		10.9	78.4	10.7	
PHF	.000	.000	.000	.000	.880	.806	.703	.909	.696	.913	.829	.938	.733	.868	.827	.916

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name : 11032002

 Site Code : 11032002

 Start Date : 8/8/2013

 Page No : 3

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

					Gro	ups Printed-	Trucks						
	N	orthampton St]	Harrison Ave		N	orthampton S	t		Harrison Ave		
		From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
07:00 AM	0	0	0	0	4	1	0	1	0	0	3	0	9
07:15 AM	0	0	0	0	4	0	0	1	0	0	2	0	7
07:30 AM	0	0	0	1	5	0	0	1	0	0	3	1	11
07:45 AM	0	0	0	1	3	1	0	4	1	1	2	0	13
Total	0	0	0	2	16	2	0	7	1	1	10	1	40
08:00 AM	0	0	0	0	5	0	0	2	0	1	5	0	13
08:15 AM	0	0	0	1	1	0	0	1	2	1	3	0	9
08:30 AM	0	0	0	1	3	1	0	0	0	1	2	0	8
08:45 AM	0	0	0	0	5	0	2	1	0	0	0	0	8
Total	0	0	0	2	14	1	2	4	2	3	10	0	38
Grand Total	0	0	0	4	30	3	2	11	3	4	20	1	78
Apprch %	0	0	0	10.8	81.1	8.1	12.5	68.8	18.8	16	80	4	
Total %	0	0	0	5.1	38.5	3.8	2.6	14.1	3.8	5.1	25.6	1.3	

		Northam	pton St			Harris	on Ave			Northa	mpton St			Harris	on Ave		
		From N	North			From	East			Fron	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 07:00 AN	I to 08:45 A	M - Peak	1 of 1													
Peak Hour for Entire In	ntersection Be	gins at 07:3	30 AM														
07:30 AM	0	0	0	0	1	5	0	6	0	1	0	1	0	3	1	4	11
07:45 AM	0	0	0	0	1	3	1	5	0	4	1	5	1	2	0	3	13
08:00 AM	0	0	0	0	0	5	0	5	0	2	0	2	1	5	0	6	13
08:15 AM	0	0	0	0	1	1	0	2	0	1	2	3	1	3	0	4	9
Total Volume	0	0	0	0	3	14	1	18	0	8	3	11	3	13	1	17	46
% App. Total	0	0	0		16.7	77.8	5.6		0	72.7	27.3		17.6	76.5	5.9		
PHF	.000	.000	.000	.000	.750	.700	.250	.750	.000	.500	.375	.550	.750	.650	.250	.708	.885

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032002

 Site Code
 : 11032002

 Start Date
 : 8/8/2013

 Page No
 : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	07:00 AM				07:00 AM				07:30 AM				07:30 AM			
+0 mins.	0	0	0	0	0	4	1	5	0	1	0	1	0	3	1	4
+15 mins.	0	0	0	0	0	4	0	4	0	4	1	5	1	2	0	3
+30 mins.	0	0	0	0	1	5	0	6	0	2	0	2	1	5	0	6
+45 mins.	0	0	0	0	1	3	1	5	0	1	2	3	1	3	0	4
Total Volume	0	0	0	0	2	16	2	20	0	8	3	11	3	13	1	17
% App. Total	0	0	0		10	80	10		0	72.7	27.3		17.6	76.5	5.9	
PHF	.000	.000	.000	.000	.500	.800	.500	.833	.000	.500	.375	.550	.750	.650	.250	.708

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name : 11032002

 Site Code : 11032002

 Start Date : 8/8/2013

 Page No : 3

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

								Grou	ps Printed-	Bikes Pe	ds								
]	Northamp	oton St			Harriso	n Ave			Northam	oton St			Harriso	n Ave				
		From N	orth			From 1	East			From S	outh			From V	West				
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
07:00 AM	0	0	0	14	0	1	0	10	0	0	1	17	0	1	0	4	45	3	48
07:15 AM	0	0	1	12	0	1	0	11	0	0	3	12	0	1	1	5	40	7	47
07:30 AM	0	0	0	24	0	0	0	12	0	0	0	14	0	2	1	5	55	3	58
07:45 AM	2	2	0	24	1	1	0	20	0	1	0	18	0	1	0	9	71	8	79
Total	2	2	1	74	1	3	0	53	0	1	4	61	0	5	2	23	211	21	232
08:00 AM	0	0	0	16	1	0	0	9	0	0	1	21	0	2	0	15	61	4	65
08:15 AM	1	0	0	26	1	2	0	13	0	0	0	24	0	5	0	18	81	9	90
08:30 AM	0	0	0	37	0	0	1	22	0	2	0	18	0	4	0	13	90	7	97
08:45 AM	0	0	0	36	0	1	0	26	0	0	1	23	0	9	0	17	102	11	113
Total	1	0	0	115	2	3	1	70	0	2	2	86	0	20	0	63	334	31	365
Grand Total	3	2	1	189	3	6	1	123	0	3	6	147	0	25	2	86	545	52	597
Apprch %	50	33.3	16.7		30	60	10		0	33.3	66.7		0	92.6	7.4				
Total %	5.8	3.8	1.9		5.8	11.5	1.9		0	5.8	11.5		0	48.1	3.8		91.3	8.7	

		Northam	pton St			Harris	on Ave			Northa	npton St			Harris	on Ave		
		From 1	North			From	East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fron	n 07:00 AM	I to 08:45 A	M - Peak	1 of 1													
Peak Hour for Entire Inte	ersection Be	gins at 08:0	00 AM														
08:00 AM	0	0	0	0	1	0	0	1	0	0	1	1	0	2	0	2	4
08:15 AM	1	0	0	1	1	2	0	3	0	0	0	0	0	5	0	5	9
08:30 AM	0	0	0	0	0	0	1	1	0	2	0	2	0	4	0	4	7
08:45 AM	0	0	0	0	0	1	0	1	0	0	1	1	0	9	0	9	11
Total Volume	1	0	0	1	2	3	1	6	0	2	2	4	0	20	0	20	31
% App. Total	100	0	0		33.3	50	16.7		0	50	50		0	100	0		
PHF	.250	.000	.000	.250	.500	.375	.250	.500	.000	.250	.500	.500	.000	.556	.000	.556	.705

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032002

 Site Code
 : 11032002

 Start Date
 : 8/8/2013

 Page No
 : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	07:00 AM				07:45 AM				07:00 AM				08:00 AM			
+0 mins.	0	0	0	0	1	1	0	2	0	0	1	1	0	2	0	2
+15 mins.	0	0	1	1	1	0	0	1	0	0	3	3	0	5	0	5
+30 mins.	0	0	0	0	1	2	0	3	0	0	0	0	0	4	0	4
+45 mins.	2	2	0	4	0	0	1	1	0	1	0	1	0	9	0	9
Total Volume	2	2	1	5	3	3	1	7	0	1	4	5	0	20	0	20
MApp. Total	40	40	20		42.9	42.9	14.3		0	20	80		0	100	0	
PHF	.250	.250	.250	.313	.750	.375	.250	.583	.000	.250	.333	.417	.000	.556	.000	.556

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name : 11032002

 Site Code : 11032002

 Start Date : 8/8/2013

 Page No : 3

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

					Group	s Printed- Ca	rs - Trucks						
	N	orthampton St			Harrison Ave		N	orthampton S	t]]	Harrison Ave		
		From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
04:00 PM	0	0	0	46	74	11	17	27	14	10	60	6	265
04:15 PM	0	0	0	42	83	8	11	30	17	6	48	6	251
04:30 PM	0	0	0	43	72	9	12	33	7	6	45	8	235
04:45 PM	0	0	0	38	78	16	20	44	14	9	56	9	284
Total	0	0	0	169	307	44	60	134	52	31	209	29	1035
05:00 PM	0	0	0	40	71	8	18	36	12	7	57	7	256
05:15 PM	0	0	0	37	71	10	5	41	11	9	55	5	244
05:30 PM	0	0	0	55	63	10	10	37	13	8	45	7	248
05:45 PM	0	0	0	42	51	6	9	33	6	6	33	5	191
Total	0	0	0	174	256	34	42	147	42	30	190	24	939
Grand Total	0	0	0	343	563	78	102	281	94	61	399	53	1974
Apprch %	0	0	0	34.9	57.2	7.9	21.4	58.9	19.7	11.9	77.8	10.3	
Total %	0	0	0	17.4	28.5	4	5.2	14.2	4.8	3.1	20.2	2.7	
Cars	0	0	0	341	542	78	102	279	94	61	392	53	1942
% Cars	0	0	0	99.4	96.3	100	100	99.3	100	100	98.2	100	98.4
Trucks	0	0	0	2	21	0	0	2	0	0	7	0	32
% Trucks	0	0	0	0.6	3.7	0	0	0.7	0	0	1.8	0	1.6

		Northan	npton St			Harris	on Ave			Northan	npton St			Harris	on Ave		
		From	North			From	ı East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 04:00 PN	A to 05:45 P	M - Peak 1	of 1													
Peak Hour for Entire In	ntersection B	legins at 04:	00 PM														
04:00 PM	0	0	0	0	46	74	11	131	17	27	14	58	10	60	6	76	265
04:15 PM	0	0	0	0	42	83	8	133	11	30	17	58	6	48	6	60	251
04:30 PM	0	0	0	0	43	72	9	124	12	33	7	52	6	45	8	59	235
04:45 PM	0	0	0	0	38	78	16	132	20	44	14	78	9	56	9	74	284
Total Volume	0	0	0	0	169	307	44	520	60	134	52	246	31	209	29	269	1035
% App. Total	0	0	0		32.5	59	8.5		24.4	54.5	21.1		11.5	77.7	10.8		
PHF	.000	.000	.000	.000	.918	.925	.688	.977	.750	.761	.765	.788	.775	.871	.806	.885	.911
Cars	0	0	0	0	168	298	44	510	60	133	52	245	31	204	29	264	1019
% Cars	0	0	0	0	99.4	97.1	100	98.1	100	99.3	100	99.6	100	97.6	100	98.1	98.5
Trucks	0	0	0	0	1	9	0	10	0	1	0	1	0	5	0	5	16
% Trucks	0	0	0	0	0.6	2.9	0	1.9	0	0.7	0	0.4	0	2.4	0	1.9	1.5

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032002

 Site Code
 : 11032002

 Start Date
 : 8/8/2013

 Page No
 : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

real from for Baen rep	protein Degn															
	04:00 PM				04:00 PM				04:45 PM				04:45 PM			
+0 mins.	0	0	0	0	46	74	11	131	20	44	14	78	9	56	9	74
+15 mins.	0	0	0	0	42	83	8	133	18	36	12	66	7	57	7	71
+30 mins.	0	0	0	0	43	72	9	124	5	41	11	57	9	55	5	69
+45 mins.	0	0	0	0	38	78	16	132	10	37	13	60	8	45	7	60
Total Volume	0	0	0	0	169	307	44	520	53	158	50	261	33	213	28	274
% App. Total	0	0	0		32.5	59	8.5		20.3	60.5	19.2		12	77.7	10.2	
PHF	.000	.000	.000	.000	.918	.925	.688	.977	.663	.898	.893	.837	.917	.934	.778	.926
Cars	0	0	0	0	168	298	44	510	53	157	50	260	33	210	28	271
% Cars	0	0	0	0	99.4	97.1	100	98.1	100	99.4	100	99.6	100	98.6	100	98.9
Trucks	0	0	0	0	1	9	0	10	0	1	0	1	0	3	0	3

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

					Gr	oups Printed	- Cars						
	No	rthampton St]	Harrison Ave		Ň	orthampton S	t	I	Harrison Ave		
	1	From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
04:00 PM	0	0	0	45	71	11	17	27	14	10	58	6	259
04:15 PM	0	0	0	42	82	8	11	29	17	6	46	6	247
04:30 PM	0	0	0	43	69	9	12	33	7	6	45	8	232
04:45 PM	0	0	0	38	76	16	20	44	14	9	55	9	281
Total	0	0	0	168	298	44	60	133	52	31	204	29	1019
05:00 PM	0	0	0	39	67	8	18	35	12	7	56	7	249
05:15 PM	0	0	0	37	68	10	5	41	11	9	55	5	241
05:30 PM	0	0	0	55	62	10	10	37	13	8	44	7	246
05:45 PM	0	0	0	42	47	6	9	33	6	6	33	5	187
Total	0	0	0	173	244	34	42	146	42	30	188	24	923
Grand Total	0	0	0	341	542	78	102	279	94	61	392	53	1942
Apprch %	0	0	0	35.5	56.4	8.1	21.5	58.7	19.8	12.1	77.5	10.5	
Total %	0	0	0	17.6	27.9	4	5.3	14.4	4.8	3.1	20.2	2.7	

		Northam	pton St			Harris	on Ave			Northa	mpton St			Harris	on Ave		
		From I	North			From	East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fre	om 04:00 PM	I to 05:45 P	M - Peak	1 of 1													
Peak Hour for Entire In	ntersection Be	egins at 04:0	00 PM														
04:00 PM	0	0	0	0	45	71	11	127	17	27	14	58	10	58	6	74	259
04:15 PM	0	0	0	0	42	82	8	132	11	29	17	57	6	46	6	58	247
04:30 PM	0	0	0	0	43	69	9	121	12	33	7	52	6	45	8	59	232
04:45 PM	0	0	0	0	38	76	16	130	20	44	14	78	9	55	9	73	281
Total Volume	0	0	0	0	168	298	44	510	60	133	52	245	31	204	29	264	1019
% App. Total	0	0	0		32.9	58.4	8.6		24.5	54.3	21.2		11.7	77.3	11		
PHF	.000	.000	.000	.000	.933	.909	.688	.966	.750	.756	.765	.785	.775	.879	.806	.892	.907

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032002

 Site Code
 : 11032002

 Start Date
 : 8/8/2013

 Page No
 : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	04:00 PM				04:00 PM				04:45 PM				04:30 PM			
+0 mins.	0	0	0	0	45	71	11	127	20	44	14	78	6	45	8	59
+15 mins.	0	0	0	0	42	82	8	132	18	35	12	65	9	55	9	73
+30 mins.	0	0	0	0	43	69	9	121	5	41	11	57	7	56	7	70
+45 mins.	0	0	0	0	38	76	16	130	10	37	13	60	9	55	5	69
Total Volume	0	0	0	0	168	298	44	510	53	157	50	260	31	211	29	271
% App. Total	0	0	0		32.9	58.4	8.6		20.4	60.4	19.2		11.4	77.9	10.7	
PHF	.000	.000	.000	.000	.933	.909	.688	.966	.663	.892	.893	.833	.861	.942	.806	.928

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name : 11032002

 Site Code : 11032002

 Start Date : 8/8/2013

 Page No : 3

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

					Gro	oups Printed-	Trucks						
	No	orthampton St		J	Harrison Ave		N	orthampton S	t		Harrison Ave		
	-	From North			From East			From South			From West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
04:00 PM	0	0	0	1	3	0	0	0	0	0	2	0	6
04:15 PM	0	0	0	0	1	0	0	1	0	0	2	0	4
04:30 PM	0	0	0	0	3	0	0	0	0	0	0	0	3
04:45 PM	0	0	0	0	2	0	0	0	0	0	1	0	3
Total	0	0	0	1	9	0	0	1	0	0	5	0	16
05:00 PM	0	0	0	1	4	0	0	1	0	0	1	0	7
05:15 PM	0	0	0	0	3	0	0	0	0	0	0	0	3
05:30 PM	0	0	0	0	1	0	0	0	0	0	1	0	2
05:45 PM	0	0	0	0	4	0	0	0	0	0	0	0	4
Total	0	0	0	1	12	0	0	1	0	0	2	0	16
Grand Total	0	0	0	2	21	0	0	2	0	0	7	0	32
Apprch %	0	0	0	8.7	91.3	0	0	100	0	0	100	0	
Total %	0	0	0	6.2	65.6	0	0	6.2	0	0	21.9	0	

		Northam	pton St			Harris	on Ave			Northa	npton St			Harris	on Ave		
		From 1	North			From	East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fr	om 04:00 PM	I to 05:45 P	M - Peak	1 of 1													
Peak Hour for Entire In	ntersection Be	egins at 04:1	15 PM														
04:15 PM	0	0	0	0	0	1	0	1	0	1	0	1	0	2	0	2	4
04:30 PM	0	0	0	0	0	3	0	3	0	0	0	0	0	0	0	0	3
04:45 PM	0	0	0	0	0	2	0	2	0	0	0	0	0	1	0	1	3
05:00 PM	0	0	0	0	1	4	0	5	0	1	0	1	0	1	0	1	7
Total Volume	0	0	0	0	1	10	0	11	0	2	0	2	0	4	0	4	17
% App. Total	0	0	0		9.1	90.9	0		0	100	0		0	100	0		
PHF	.000	.000	.000	.000	.250	.625	.000	.550	.000	.500	.000	.500	.000	.500	.000	.500	.607

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032002

 Site Code
 : 11032002

 Start Date
 : 8/8/2013

 Page No
 : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	04:00 PM				04:30 PM				04:15 PM				04:00 PM			
+0 mins.	0	0	0	0	0	3	0	3	0	1	0	1	0	2	0	2
+15 mins.	0	0	0	0	0	2	0	2	0	0	0	0	0	2	0	2
+30 mins.	0	0	0	0	1	4	0	5	0	0	0	0	0	0	0	0
+45 mins.	0	0	0	0	0	3	0	3	0	1	0	1	0	1	0	1
Total Volume	0	0	0	0	1	12	0	13	0	2	0	2	0	5	0	5
% App. Total	0	0	0		7.7	92.3	0		0	100	0		0	100	0	
PHF	.000	.000	.000	.000	.250	.750	.000	.650	.000	.500	.000	.500	.000	.625	.000	.625

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name : 11032002

 Site Code : 11032002

 Start Date : 8/8/2013

 Page No : 3

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

								Group	os Printed-	Bikes Pe	ds								
]	Northam	pton St			Harriso	n Ave			Northamp	oton St			Harriso	n Ave				
		From N	lorth			From	East			From S	outh			From V	West				
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
04:00 PM	1	1	0	20	0	2	2	12	1	1	1	29	0	2	0	14	75	11	86
04:15 PM	1	0	0	36	0	4	0	11	0	0	2	27	1	3	0	8	82	11	93
04:30 PM	0	1	0	32	3	2	0	5	0	0	0	39	0	0	0	3	79	6	85
04:45 PM	0	1	0	17	0	3	1	8	2	0	0	32	0	1	0	13	70	8	78
Total	2	3	0	105	3	11	3	36	3	1	3	127	1	6	0	38	306	36	342
05:00 PM	0	0	1	21	1	1	0	5	1	1	0	45	0	4	0	12	83	9	92
05:15 PM	0	1	0	33	0	3	0	4	1	1	0	30	0	2	0	15	82	8	90
05:30 PM	0	0	0	27	0	4	0	9	0	2	0	14	1	3	0	12	62	10	72
05:45 PM	0	1	0	26	0	4	1	11	1	1	0	35	0	0	1	18	90	9	99
Total	0	2	1	107	1	12	1	29	3	5	0	124	1	9	1	57	317	36	353
Grand Total	2	5	1	212	4	23	4	65	6	6	3	251	2	15	1	95	623	72	695
Apprch %	25	62.5	12.5		12.9	74.2	12.9		40	40	20		11.1	83.3	5.6				
Total %	2.8	6.9	1.4		5.6	31.9	5.6		8.3	8.3	4.2		2.8	20.8	1.4		89.6	10.4	

		Northam	pton St			Harris	on Ave			Northa	npton St			Harris	on Ave		
		From 1	North			From	East			From	South			From	West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fron	n 04:00 PM	to 05:45 P	M - Peak	1 of 1			-				-				-		
Peak Hour for Entire Inte	ersection Be	gins at 04:0	00 PM														
04:00 PM	1	1	0	2	0	2	2	4	1	1	1	3	0	2	0	2	11
04:15 PM	1	0	0	1	0	4	0	4	0	0	2	2	1	3	0	4	11
04:30 PM	0	1	0	1	3	2	0	5	0	0	0	0	0	0	0	0	6
04:45 PM	0	1	0	1	0	3	1	4	2	0	0	2	0	1	0	1	8
Total Volume	2	3	0	5	3	11	3	17	3	1	3	7	1	6	0	7	36
% App. Total	40	60	0		17.6	64.7	17.6		42.9	14.3	42.9		14.3	85.7	0		
PHF	.500	.750	.000	.625	.250	.688	.375	.850	.375	.250	.375	.583	.250	.500	.000	.438	.818

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032002

 Site Code
 : 11032002

 Start Date
 : 8/8/2013

 Page No
 : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	04:00 PM				04:00 PM				04:45 PM				04:45 PM			
+0 mins.	1	1	0	2	0	2	2	4	2	0	0	2	0	1	0	1
+15 mins.	1	0	0	1	0	4	0	4	1	1	0	2	0	4	0	4
+30 mins.	0	1	0	1	3	2	0	5	1	1	0	2	0	2	0	2
+45 mins.	0	1	0	1	0	3	1	4	0	2	0	2	1	3	0	4
Total Volume	2	3	0	5	3	11	3	17	4	4	0	8	1	10	0	11
% App. Total	40	60	0		17.6	64.7	17.6		50	50	0		9.1	90.9	0	
PHF	.500	.750	.000	.625	.250	.688	.375	.850	.500	.500	.000	1.000	.250	.625	.000	.688

N/S Street : Northampton Street E/W Street: Harrison Avenue City/State : Boston, MA Weather : Cloudy

 File Name : 11032002

 Site Code : 11032002

 Start Date : 8/8/2013

 Page No : 3

		Grou	ips Printed- Cars	- Trucks			
	Northamp	ton St	Garag	e Ent	Northan	pton St	
	From No	orth	From	East	From	South	
Start Time	Left	Thru	Left	Right	Thru	Right	Int. Total
07:00 AM	11	21	4	1	50	12	99
07:15 AM	13	34	2	0	58	6	113
07:30 AM	21	34	0	2	60	11	128
07:45 AM	16	32	5	2	57	26	138
Total	61	121	11	5	225	55	478
08:00 AM	15	18	2	2	72	19	128
08:15 AM	10	37	4	1	70	17	139
08:30 AM	11	32	7	2	76	14	142
08:45 AM	5	37	3	0	61	10	116
Total	41	124	16	5	279	60	525
Grand Total	102	245	27	10	504	115	1003
Apprch %	29.4	70.6	73	27	81.4	18.6	
Total %	10.2	24.4	2.7	1	50.2	11.5	
Cars	102	242	27	10	494	115	990
% Cars	100	98.8	100	100	98	100	98.7
Trucks	0	3	0	0	10	0	13
% Trucks	0	1.2	0	0	2	0	1.3

	Ν	Northampton From North	St		Garage Ent From East	:]	Northamptor From Sout	n St h	
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From (07:00 AM to 0	8:45 AM - Pea	ak 1 of 1		_			-		
Peak Hour for Entire Interse	ection Begins	at 07:45 AM								
07:45 AM	16	32	48	5	2	7	57	26	83	138
08:00 AM	15	18	33	2	2	4	72	19	91	128
08:15 AM	10	37	47	4	1	5	70	17	87	139
08:30 AM	11	32	43	7	2	9	76	14	90	142
Total Volume	52	119	171	18	7	25	275	76	351	547
% App. Total	30.4	69.6		72	28		78.3	21.7		
PHF	.813	.804	.891	.643	.875	.694	.905	.731	.964	.963
Cars	52	117	169	18	7	25	270	76	346	540
% Cars	100	98.3	98.8	100	100	100	98.2	100	98.6	98.7
Trucks	0	2	2	0	0	0	5	0	5	7
% Trucks	0	1.7	1.2	0	0	0	1.8	0	1.4	1.3

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

Peak Hour for Each Approa	ach Begins at:								
	07:15 AM			07:45 AM			07:45 AM		
+0 mins.	13	34	47	5	2	7	57	26	83
+15 mins.	21	34	55	2	2	4	72	19	91
+30 mins.	16	32	48	4	1	5	70	17	87
+45 mins.	15	18	33	7	2	9	76	14	90
Total Volume	65	118	183	18	7	25	275	76	351
% App. Total	35.5	64.5		72	28		78.3	21.7	
PHF	.774	.868	.832	.643	.875	.694	.905	.731	.964
Cars	65	117	182	18	7	25	270	76	346
% Cars	100	99.2	99.5	100	100	100	98.2	100	98.6
Trucks	0	1	1	0	0	0	5	0	5
% Trucks	0	0.8	0.5	0	0	0	1.8	0	1.4

N/S Street : Northampton Street E/W Street: Garage Entrance City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032003

 Site Code
 : 11032003

 Start Date
 : 8/8/2013

 Page No
 : 3

			Groups Printed- C	Cars			
	Northampt	ton St	Garag	e Ent	Northam	pton St	
	From No	rth	From	East	From	South	
Start Time	Left	Thru	Left	Right	Thru	Right	Int. Total
07:00 AM	11	21	4	1	49	12	98
07:15 AM	13	33	2	0	56	6	110
07:30 AM	21	34	0	2	59	11	127
07:45 AM	16	32	5	2	54	26	135
Total	61	120	11	5	218	55	470
08:00 AM	15	18	2	2	72	19	128
08:15 AM	10	36	4	1	69	17	137
08:30 AM	11	31	7	2	75	14	140
08:45 AM	5	37	3	0	60	10	115
Total	41	122	16	5	276	60	520
Grand Total	102	242	27	10	494	115	990
Apprch %	29.7	70.3	73	27	81.1	18.9	
Total %	10.3	24.4	2.7	1	49.9	11.6	

	Northampton St		St		Garage En	t	I	St		
		From North	l		From East			From South	ı	
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From (07:00 AM to 0	8:45 AM - Pea	ak 1 of 1							
Peak Hour for Entire Inters	ection Begins	at 07:45 AM								
07:45 AM	16	32	48	5	2	7	54	26	80	135
08:00 AM	15	18	33	2	2	4	72	19	91	128
08:15 AM	10	36	46	4	1	5	69	17	86	137
08:30 AM	11	31	42	7	2	9	75	14	89	140
Total Volume	52	117	169	18	7	25	270	76	346	540
% App. Total	30.8	69.2		72	28		78	22		
PHF	.813	.813	.880	.643	.875	.694	.900	.731	.951	.964

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

Peak Hour for Each Approa	ach Begins at:										
	07:15 AM			07:45 AM			07:45 AM	07:45 AM			
+0 mins.	13	33	46	5	2	7	54	26	80		
+15 mins.	21	34	55	2	2	4	72	19	91		
+30 mins.	16	32	48	4	1	5	69	17	86		
+45 mins.	15	18	33	7	2	9	75	14	89		
Total Volume	65	117	182	18	7	25	270	76	346		
% App. Total	35.7	64.3		72	28		78	22			
PHF	.774	.860	.827	.643	.875	.694	.900	.731	.951		

N/S Street : Northampton Street E/W Street: Garage Entrance City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032003

 Site Code
 : 11032003

 Start Date
 : 8/8/2013

 Page No
 : 3

		G	roups Printed- Tr	ucks			
	Northampto	on St	Garage	e Ent	Northam	pton St	
	From Nor	th	From	East	From S	South	
Start Time	Left	Thru	Left	Right	Thru	Right	Int. Total
07:00 AM	0	0	0	0	1	0	1
07:15 AM	0	1	0	0	2	0	3
07:30 AM	0	0	0	0	1	0	1
07:45 AM	0	0	0	0	3	0	3
Total	0	1	0	0	7	0	8
08:00 AM	0	0	0	0	0	0	0
08:15 AM	0	1	0	0	1	0	2
08:30 AM	0	1	0	0	1	0	2
08:45 AM	0	0	0	0	1	0	1
Total	0	2	0	0	3	0	5
Grand Total	0	3	0	0	10	0	13
Apprch %	0	100	0	0	100	0	
Total %	0	23.1	0	0	76.9	0	

]	Northampton	ı St	Garage Ent			Northampton St			
		From North	h		From East	ţ		From Sout	h	
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From (07:00 AM to 0	8:45 AM - Pe	ak 1 of 1							
Peak Hour for Entire Inters	ection Begins	at 07:00 AM								
07:00 AM	0	0	0	0	0	0	1	0	1	1
07:15 AM	0	1	1	0	0	0	2	0	2	3
07:30 AM	0	0	0	0	0	0	1	0	1	1
07:45 AM	0	0	0	0	0	0	3	0	3	3
Total Volume	0	1	1	0	0	0	7	0	7	8
% App. Total	0	100		0	0		100	0		
PHF	.000	.250	.250	.000	.000	.000	.583	.000	.583	.667

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

Peak Hour for Each Approx	ach Begins at:								
	07:45 AM			07:00 AM			07:00 AM		
+0 mins.	0	0	0	0	0	0	1	0	1
+15 mins.	0	0	0	0	0	0	2	0	2
+30 mins.	0	1	1	0	0	0	1	0	1
+45 mins.	0	1	1	0	0	0	3	0	3
Total Volume	0	2	2	0	0	0	7	0	7
% App. Total	0	100		0	0		100	0	
PHF	.000	.500	.500	.000	.000	.000	.583	.000	.583

N/S Street : Northampton Street E/W Street: Garage Entrance City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032003

 Site Code
 : 11032003

 Start Date
 : 8/8/2013

 Page No
 : 3

					Groups Pr	inted- Bik	es Peds					
	No	rthampton	St		Garage Ent		No	orthampton	St			
	F	<u>rom North</u>			From East			<u>From South</u>				
Start Time	Left	Thru	Peds	Left	Right	Peds	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
07:00 AM	0	0	7	0	0	10	2	0	3	20	2	22
07:15 AM	0	0	6	0	0	13	2	0	4	23	2	25
07:30 AM	0	1	1	0	0	16	0	0	2	19	1	20
07:45 AM	0	1	3	0	0	7	0	0	2	12	1	13
Total	0	2	17	0	0	46	4	0	11	74	6	80
08:00 AM	0	1	3	0	0	4	0	0	2	9	1	10
08:15 AM	0	0	5	0	0	12	0	0	3	20	0	20
08:30 AM	0	0	3	0	0	6	1	0	4	13	1	14
08:45 AM	0	0	11	0	0	18	1	0	2	31	1	32
Total	0	1	22	0	0	40	2	0	11	73	3	76
Grand Total	0	3	39	0	0	86	6	0	22	147	9	156
Apprch %	0	100		0	0		100	0				
Total %	0	33.3		0	0		66.7	0		94.2	5.8	

	N	Northampton	St	Garage Ent			Northampton St			
		From North	ı		From East	t		From South	ı	
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From (07:00 AM to 08	8:45 AM - Pe	ak 1 of 1							
Peak Hour for Entire Inters	ection Begins a	at 07:00 AM								
07:00 AM	0	0	0	0	0	0	2	0	2	2
07:15 AM	0	0	0	0	0	0	2	0	2	2
07:30 AM	0	1	1	0	0	0	0	0	0	1
07:45 AM	0	1	1	0	0	0	0	0	0	1
Total Volume	0	2	2	0	0	0	4	0	4	6
% App. Total	0	100		0	0		100	0		
PHF	.000	.500	.500	.000	.000	.000	.500	.000	.500	.750

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

Peak Hour for Each Approx	ach Begins at:										
	07:15 AM			07:00 AM			07:00 AM	07:00 AM			
+0 mins.	0	0	0	0	0	0	2	0	2		
+15 mins.	0	1	1	0	0	0	2	0	2		
+30 mins.	0	1	1	0	0	0	0	0	0		
+45 mins.	0	1	1	0	0	0	0	0	0		
Total Volume	0	3	3	0	0	0	4	0	4		
% App. Total	0	100		0	0		100	0			
PHF	.000	.750	.750	.000	.000	.000	.500	.000	.500		

N/S Street : Northampton Street E/W Street: Garage Entrance City/State : Boston, MA Weather : Cloudy

 File Name
 : 11032003

 Site Code
 : 11032003

 Start Date
 : 8/8/2013

 Page No
 : 3

		Grou	ips Printed- Cars	- Trucks			
	Northampto	on St	Garag	e Ent	Northan	npton St	
	From Nor	th	From	East	From	South	
Start Time	Left	Thru	Left	Right	Thru	Right	Int. Total
04:00 PM	1	57	12	11	47	1	129
04:15 PM	3	51	6	6	52	1	119
04:30 PM	0	42	20	8	59	1	130
04:45 PM	2	42	15	18	59	1	137
Total	6	192	53	43	217	4	515
05:00 PM	5	51	18	18	55	3	150
05:15 PM	0	47	13	12	60	1	133
05:30 PM	3	59	9	12	49	2	134
05:45 PM	0	59	11	8	51	1	130
Total	8	216	51	50	215	7	547
Grand Total	14	408	104	93	432	11	1062
Apprch %	3.3	96.7	52.8	47.2	97.5	2.5	
Total %	1.3	38.4	9.8	8.8	40.7	1	
Cars	14	405	104	93	429	11	1056
% Cars	100	99.3	100	100	99.3	100	99.4
Trucks	0	3	0	0	3	0	6
% Trucks	0	0.7	0	0	0.7	0	0.6

	Ň	Northampton S	St	Garage Ent From East			ľ	Northampton From South	St	
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From (04:00 PM to 05	:45 PM - Peak	: 1 of 1		<u>.</u>	••			••	
Peak Hour for Entire Inters	ection Begins a	at 04:45 PM								
04:45 PM	2	42	44	15	18	33	59	1	60	137
05:00 PM	5	51	56	18	18	36	55	3	58	150
05:15 PM	0	47	47	13	12	25	60	1	61	133
05:30 PM	3	59	62	9	12	21	49	2	51	134
Total Volume	10	199	209	55	60	115	223	7	230	554
% App. Total	4.8	95.2		47.8	52.2		97	3		
PHF	.500	.843	.843	.764	.833	.799	.929	.583	.943	.923
Cars	10	197	207	55	60	115	222	7	229	551
% Cars	100	99.0	99.0	100	100	100	99.6	100	99.6	99.5
Trucks	0	2	2	0	0	0	1	0	1	3
% Trucks	0	1.0	1.0	0	0	0	0.4	0	0.4	0.5
N/S Street : Northampton Street E/W Street: Garage Entrance City/State : Boston, MA Weather : Cloudy

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

Peak Hour for Each Approx	ach Begins at:								
	05:00 PM			04:30 PM			04:30 PM		
+0 mins.	5	51	56	20	8	28	59	1	60
+15 mins.	0	47	47	15	18	33	59	1	60
+30 mins.	3	59	62	18	18	36	55	3	58
+45 mins.	0	59	59	13	12	25	60	1	61
Total Volume	8	216	224	66	56	122	233	6	239
% App. Total	3.6	96.4		54.1	45.9		97.5	2.5	
PHF	.400	.915	.903	.825	.778	.847	.971	.500	.980
Cars	8	214	222	66	56	122	232	6	238
% Cars	100	99.1	99.1	100	100	100	99.6	100	99.6
Trucks	0	2	2	0	0	0	1	0	1
% Trucks	0	0.9	0.9	0	0	0	0.4	0	0.4

N/S Street : Northampton Street E/W Street: Garage Entrance City/State : Boston, MA Weather : Cloudy

			Groups Printed- (Cars			
	Northampt	on St	Garag	e Ent	Northan	npton St	
	From No	rth	From	East	From	South	
Start Time	Left	Thru	Left	Right	Thru	Right	Int. Total
04:00 PM	1	57	12	11	45	1	127
04:15 PM	3	50	6	6	52	1	118
04:30 PM	0	42	20	8	59	1	130
04:45 PM	2	42	15	18	59	1	137
Total	6	191	53	43	215	4	512
05:00 PM	5	50	18	18	54	3	148
05:15 PM	0	47	13	12	60	1	133
05:30 PM	3	58	9	12	49	2	133
05:45 PM	0	59	11	8	51	1	130
Total	8	214	51	50	214	7	544
Grand Total	14	405	104	93	429	11	1056
Apprch %	3.3	96.7	52.8	47.2	97.5	2.5	
Total %	1.3	38.4	9.8	8.8	40.6	1	

	1	Northampton	St		Garage Ent	t]	Northampton	St	
		From North	I		From East	5		From South	1	
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From (04:00 PM to 05	5:45 PM - Pea	k 1 of 1							
Peak Hour for Entire Inters	ection Begins	at 04:45 PM								
04:45 PM	2	42	44	15	18	33	59	1	60	137
05:00 PM	5	50	55	18	18	36	54	3	57	148
05:15 PM	0	47	47	13	12	25	60	1	61	133
05:30 PM	3	58	61	9	12	21	49	2	51	133
Total Volume	10	197	207	55	60	115	222	7	229	551
% App. Total	4.8	95.2		47.8	52.2		96.9	3.1		
PHF	.500	.849	.848	.764	.833	.799	.925	.583	.939	.931

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1

Peak Hour for Each Approa	ach Begins at:								
	05:00 PM			04:30 PM			04:30 PM		
+0 mins.	5	50	55	20	8	28	59	1	60
+15 mins.	0	47	47	15	18	33	59	1	60
+30 mins.	3	58	61	18	18	36	54	3	57
+45 mins.	0	59	59	13	12	25	60	1	61
Total Volume	8	214	222	66	56	122	232	6	238
% App. Total	3.6	96.4		54.1	45.9		97.5	2.5	
PHF	.400	.907	.910	.825	.778	.847	.967	.500	.975

N/S Street : Northampton Street E/W Street: Garage Entrance City/State : Boston, MA Weather : Cloudy

			Froups Printed- Tr	rucks			
	Northampto	on St	Garag	e Ent	Northam	pton St	
	From Nor	rth	From	East	From	South	
Start Time	Left	Thru	Left	Right	Thru	Right	Int. Total
04:00 PM	0	0	0	0	2	0	2
04:15 PM	0	1	0	0	0	0	1
04:30 PM	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0
Total	0	1	0	0	2	0	3
05:00 PM	0	1	0	0	1	0	2
05:15 PM	0	0	0	0	0	0	0
05:30 PM	0	1	0	0	0	0	1
05:45 PM	0	0	0	0	0	0	0
Total	0	2	0	0	1	0	3
Grand Total	0	3	0	0	3	0	6
Apprch %	0	100	0	0	100	0	
Total %	0	50	0	0	50	0	

	1	Northampton	n St		Garage En	t		Northampton	St	
		From Nort	h		From East			From South	1	
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From	04:00 PM to 0	5:45 PM - Pea	ak 1 of 1							
Peak Hour for Entire Inters	ection Begins	at 04:00 PM								
04:00 PM	0	0	0	0	0	0	2	0	2	2
04:15 PM	0	1	1	0	0	0	0	0	0	1
04:30 PM	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0
Total Volume	0	1	1	0	0	0	2	0	2	3
% App. Total	0	100		0	0		100	0		
PHF	.000	.250	.250	.000	.000	.000	.250	.000	.250	.375

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1

Peak Hour for Each Approa	ach Begins at:								
	04:15 PM			04:00 PM			04:00 PM		
+0 mins.	0	1	1	0	0	0	2	0	2
+15 mins.	0	0	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0	0	0
+45 mins.	0	1	1	0	0	0	0	0	0
Total Volume	0	2	2	0	0	0	2	0	2
% App. Total	0	100		0	0		100	0	
PHF	.000	.500	.500	.000	.000	.000	.250	.000	.250

N/S Street : Northampton Street E/W Street: Garage Entrance City/State : Boston, MA Weather : Cloudy

					Groups Pr	inted- Bik	es Peds					
	Nor	thampton	St	G	arage Ent		No	orthampton	St			
	F	<u>rom North</u>		I	From East]]	From South				
Start Time	Left	Thru	Peds	Left	Right	Peds	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total
04:00 PM	0	1	9	0	0	10	1	1	3	22	3	25
04:15 PM	0	0	3	0	1	10	1	0	5	18	2	20
04:30 PM	0	5	10	0	0	18	1	0	4	32	6	38
04:45 PM	0	1	6	0	0	13	1	0	4	23	2	25
Total	0	7	28	0	1	51	4	1	16	95	13	108
05:00 PM	0	0	3	0	2	16	3	0	4	23	5	28
05:15 PM	0	2	5	1	0	6	0	0	1	12	3	15
05:30 PM	0	0	13	0	1	8	2	0	4	25	3	28
05:45 PM	0	0	8	0	0	5	0	0	2	15	0	15
Total	0	2	29	1	3	35	5	0	11	75	11	86
Crear d Tetal	0	0	57	1	4	96	0	1	27	170	24	104
Grand Total	0	9	57	1	4	80	9	1	27	170	24	194
Apprch %	0	100		20	80		90	10		07.6	10.4	
Total %	0	37.5		4.2	16.7		37.5	4.2		87.6	12.4	

	N	lorthampton	St		Garage En	ıt		Northampton	n St	
		From North	ı		From East	t		From Sout	h	
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From (04:00 PM to 05	5:45 PM - Pea	k 1 of 1							
Peak Hour for Entire Inters	ection Begins a	at 04:30 PM								
04:30 PM	0	5	5	0	0	0	1	0	1	6
04:45 PM	0	1	1	0	0	0	1	0	1	2
05:00 PM	0	0	0	0	2	2	3	0	3	5
05:15 PM	0	2	2	1	0	1	0	0	0	3
Total Volume	0	8	8	1	2	3	5	0	5	16
% App. Total	0	100		33.3	66.7		100	0		
PHF	.000	.400	.400	.250	.250	.375	.417	.000	.417	.667

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1

Peak Hour for Each Approx	ach Begins at:								
	04:30 PM			04:45 PM			04:15 PM		
+0 mins.	0	5	5	0	0	0	1	0	1
+15 mins.	0	1	1	0	2	2	1	0	1
+30 mins.	0	0	0	1	0	1	1	0	1
+45 mins.	0	2	2	0	1	1	3	0	3
Total Volume	0	8	8	1	3	4	6	0	6
% App. Total	0	100		25	75		100	0	
PHF	.000	.400	.400	.250	.375	.500	.500	.000	.500

N/S Street : Northampton Street E/W Street: Garage Entrance City/State : Boston, MA Weather : Cloudy

	٦	->	\mathbf{r}	1	-	•	•	Ť	۲	5	ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2
Lane Configurations	1000	4 1	1000	1000	4 î »	1000	1000	4	1000	1000	4	1000	
Total Lost Time (s)	4.0	1900	1900	1900	4.0	4.0	1900	1900 4.0	4.0	1900 4.0	4.0	1900 4.0	
Leading Detector (ft)	50	50		50	50		50	50	50	50	50		
Trailing Detector (ft)	0	0	0	0	0	0	15	0	0	0	0	٥	
Lane Util. Factor	0.95	0.95	9 0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.985			0.968				0.850		0.947		
Fit Protected Satd Flow (prot)	0	0.984	0	0	2054	0	0	0.990	1275	0	0.983	0	
Flt Permitted	0	0.687	0	0	0.764	0	0	0.915	12/5	U	0.846	U	
Satd. Flow (perm)	0	2076	0	0	2270	0	0	1535	1275	0	1325	0	
Right Turn on Red		40	Yes		00	Yes			Yes		07	Yes	
Said. Flow (RTOR) Headway Factor	1 14	12	1 14	1 14	29	1.14	1 14	1.14	51 1.14	1,14	1.14	1,14	
Link Speed (mph)	1.14	30			30			30			30		
Link Distance (ft)		318			402			243			395		
Volume (vpb)	210	7.2	64	26	9.1 185	54	11	5.5 78	28	51	9.0	64	
Peak Hour Factor	0.90	0.88	0.89	0.72	0.86	0.81	0.39	0.75	0.55	0.71	0.62	0.80	
Heavy Vehicles (%)	2%	7%	13%	0%	8%	2%	9%	0%	14%	4%	0%	5%	
Adj. Flow (vph)	243	411	72	36	215	67	28	104	51	72	52	80	
Lane Group Flow (vph)	D.P+P	126	U	Perm	318	U	Perm	132	Perm	Perm	204	U	
Protected Phases	6	16			1			5			5		2
Permitted Phases	1			1			5	-	5	5	_		
Detector Phases	6	16		1	20		5	5	5	5	5		4.0
Minimum Initial (s)	4.0			8.0	8.0 12.0		8.0 14.0	8.0 14.0	8.0 14.0	8.0 14.0	8.0 14.0		4.0
Total Split (s)	18.0	58.0	0.0	40.0	40.0	0.0	38.0	38.0	38.0	38.0	38.0	0.0	24.0
Total Split (%)	15.0%	48.3%	0.0%	33.3%	33.3%	0.0%	31.7%	31.7%	31.7%	31.7%	31.7%	0.0%	20%
Maximum Green (s)	14.0			36.0	36.0		32.0	32.0	32.0	32.0	32.0		20.0
All-Red Time (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
Lead/Lag	Lag			Lead	Lead		Lead	Lead	Lead	Lead	Lead		Lag
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes
Vehicle Extension (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
Walk Time (s)	None			C-Max	C-Max		None	None	None	INONE	None		7.0
Flash Dont Walk (s)													13.0
Pedestrian Calls (#/hr)		0.5 5			0.5 5			00.0	00.0				5
Act Effct Green (s)		80.2			66.2			23.0	23.0		23.0		
v/c Ratio		0.67			0.55			0.19	0.19		0.19		
Control Delay		11.9			24.0			46.1	10.9		54.4		
Queue Delay		0.0			0.0			0.0	0.0		0.0		
I otal Delay		11.9			24.0			46.1	10.9		54.4		
Approach Delav		ы 11.9			24.0			36.2	В		54.4		
Approach LOS		B			C			D			D		
90th %ile Green (s)	14.0			37.0	37.0		31.0	31.0	31.0	31.0	31.0		20.0
90th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Ped
70th %ile Green (s)	14.0 Max			67.4 Coord	67.4 Coord		24.6 Gap	24.6 Gan	Cap Gap	24.6 Gan	24.6 Gan		0.0 Skip
50th %ile Green (s)	14.0			71.3	71.3		20.7	20.7	20.7	20.7	20.7		0.0
50th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
30th %ile Green (s)	14.0			75.0	75.0		17.0	17.0	17.0	17.0	17.0		0.0
30th %ile Lerm Code	Max			Coord 80.2	Coord 80.2		Gap 11.9	Gap 11.8	Gap 11.9	Gap 11.8	Gap 11.8		Skip
10th %ile Term Code	Max			Coord	Coord		Gap	Gan	Gap	Gan	Gan		Skip
Stops (vph)	Max	264		Coord	196		Jup	76	5	Cup	117		Chip
Fuel Used(gal)		5			3			1	0		3		
CO Emissions (g/hr)		323			224			99	10		191		
		63 75			44			19	2		37		
Dilemma Vehicles (#)		0			0			23	0				
Queue Length 50th (ft)		85			93			92	0		131		
Queue Length 95th (ft)		253			145			113	7		118		
Internal Link Dist (ft)		238			322			163			315		
Base Capacity (vph)		1496			1265			435	398		395		
Starvation Cap Reductn	1	0			0				0		0		
Spillback Cap Reductn		0			0			0	0		0		
Storage Cap Reductn		0			0			0	0		0.50		
Reduced V/C Ratio		0.49			0.25			0.30	0.13		0.52		
Intersection Summary	0.00												
Area Type:	CBD												
Actuated Cycle Length:	120												
Offset: 76 (63%), Refere	enced to p	hase 1:E	EBWB,	Start of (Green								
Natural Cycle: 80													
Control Type: Actuated- Maximum v/a Patio: 0.7	Coordinat	ted											
Intersection Signal Dela	y: 23.8			Ir	ntersecti	on LOS:	: C						
ntersection Capacity Ut	tilization 5	4.9%		10	CU Leve	l of Serv	vice A						
Analysis Period (min) 15	5												
	Albert	troot 0 h	Jorthan	anton Ct-	oot								
opiits and Phases: 3:	Albany S	reet & N	vortnam	ipton Stre	et								
🏞 ø1		₹ ₿ ø2		₩.	5			≁ ₀6					
40 s	2	24 s		38 s				18 s					

٦	-+	\mathbf{r}	1	-	•	1	Ť	1	×	Ŧ	-
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
1900	1900	1900	1900	1900	1900	1900	↑ 1900	1900	1900	↑ 1900	1900
4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
50	50		50	50		50	50		50	50	
15	U	9	15	U	9	15	U	9	15	U	9
1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
	0.95			0.97		0.94	0.91			0.95	
	0.983			0.970		0.950	0.967		0.950	0.978	
0	1692	0	0	1619	0	1770	2925	0	1752	3121	0
-	0.869	^	^	0.676	^	0.234	0005	~	0.135	0404	-
0	1470	0 Yes	0	1108	0 Yes	409	2925	0 Yes	249	3121	0 Yes
	8	100		15	100		52	100		27	105
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	30			30			30 677			2154	
	6.0			5.1			15.4			49.0	
48	290	41	63	151	46	49	853	204	91	705	115
75		202	202		75	119		139	139		119
0.73	0.89	0.71	0.80	0.87	2 0.64	0.72	0.95	0.79	0.94	0.94	0.90
11%	4%	5%	7%	13%	2%	2%	10%	4%	3%	8%	4%
66	326	58	79	174	72	68	898	258	97	750	128
0 Perm	450	0	0 Perm	325	0	68 pm+pt	1156	0	97 pm+pt	878	0
i enn	4		1 enn	8		5 pint	2		pin#pi	6	
4			8			2			6		
4	4		8	8		5	2		1	6	
8.0	8.0 22.0		8.0 22.0	22.0		6.0	8.0 22.0		6.0 10.0	8.0 22.0	
35.0	35.0	0.0	35.0	35.0	0.0	12.0	53.0	0.0	12.0	53.0	0.0
35.0%	35.0%	0.0%	35.0%	35.0%	0.0%	12.0%	53.0%	0.0%	12.0%	53.0%	0.0%
31.0	31.0		31.0	31.0		8.0	49.0		8.0	49.0	
3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
1.5	1.0		1.0	1.0		Lead	Lag		Lead	Lag	
						Yes	Yes		Yes	Yes	
3.0 Nonc	3.0		3.0	3.0		3.0	3.0 C-Mox		3.0 Mox	3.0	
7.0	7.0		7.0	7.0		NONe	C-IVIAX 7.0		wax	7.0	
11.0	11.0		11.0	11.0			11.0			11.0	
0	0		0	0		50.0	0		50.4	0	
	31.0			31.0		56.0	49.0		58.4	52.0	
	0.98			0.92		0.21	0.49		0.36	0.52	
	71.5			64.6		9.6	25.2		12.2	17.6	
	0.0			0.0		0.0	0.0		0.0	0.0	
	71.5			64.6		9.6	25.2		12.2	17.6	
	71.5			64.6		А	24.3		в	В 17.1	
	E			E			C			B	
31.0	31.0		31.0	31.0		8.0	49.0		8.0	49.0	
Max	Max		Max	Max		Max	Coord		MaxR	Coord	
31.0 Max	31.0 Max		31.0 Max	31.0 May		7.6 Gan	49.0 Coord		8.0 MayP	49.4 Coord	
31.0	31.0		31.0	31.0		7.0	49.0		8.0	50.0	
Max	Max		Max	Max		Gap	Coord		MaxR	Coord	
31.0	31.0		31.0	31.0		6.4	49.0		8.0	50.6	
Max 31.0	Max 31.0		Max 31.0	Max 31.0		Gap	Coord		MaxR	Coord 61.0	
Max	Max		Hold	Hold		Skip	Coord		MaxR	Coord	
	319			214		19	823		37	518	
	8			5		0	16		2	20	
	565			354		32	1087		137	1368	
	131			82		7	252		32	317	
	0			0		0	0		0	0	
	279			191		16	298		24	189	
	#475			#343		26	390		45	254	
	186			144			597			2074	
	461			354		342	1460		266	1636	
1	0			0		0	0		0	0	
	0			0		0	0		0	0	
	0.98			0.92		0.20	0.79		0.36	0.54	
	0.00			3.32		5.20	5.75		0.00	0.04	
Other											
Uner											
100											
enced to p	hase 2:1	NBTL ar	nd 6:SBT	L, Start	of Gree	n					
	ad										
Coordin											
Coordinat	eu										
-Coordinat 8 ay: 33.5	.60		Ir	ntersectio	on LOS:	С					
Coordinat 8 ay: 33.5 tilization 7	2.0%		lr IC	ntersectio	on LOS: of Serv	C ice C					
Coordinat 8 ay: 33.5 tilization 7 5	2.0%		lr IC	ntersectio	on LOS: of Serv	C ice C					
Coordinat 8 ay: 33.5 tilization 7 5 me exceed vinum after	2.0% ds capac	city, que	lr I(ue may l	ntersectio CU Leve be longe	on LOS: l of Serv r.	C ice C					
Coordinat 8 ay: 33.5 tilization 7 5 me exceed ximum afte	2.0% ds capac er two cy	<mark>city, que</mark> cles.	lr IC ue may l	ntersectio CU Leve be longe	on LOS: of Serv r.	C ice C					
	EBL 1900 400 50 0 0 0 15 1.00 0 0 0 15 1.00 0 0 0 1.00 44 8.0 22.0 35.0% 31.0 None 7.0 11.0 0 31.0 Max 31.0	EBL EBT ••• •• 1900 1900 4.0 4.0 50 50 0 0 15	EBL EBT EBR 1900 1900 1900 1900 1900 1900 100 1.00 1.00 15 9 1.00 0.93 . 0.93 0.93 . 0.93 0.93 . . 0.93 . . 0.93 . . 0.93 . . 0.93 . . 0.93 . . 0.93 . . 0.93 . . 0.93 . . 1.00 1.00 1.00 3.0 . . 1.00 	EBL EBT EBR WBL 0 40 4.0 1900 1900 1900 1900 1900 1900 100 1.00 1.00 1.00 100 1.00 1.00 1.00 100 1.00 1.00 1.00 0.93 . . . 0.983 . . . 0.993 . . . 0.993 . . . 0.993 . . . 0.1652 0 0 . 0.869 . . . 1.00 1.00 1.00 1.00 3.0 . . . 1.00 1.00 1.00 . 1.00 . . . 1.00 . . . 1.00 . . . 0.100 . . .	EBL EBT EBR WBL WBT \bullet \bullet \bullet \bullet 1900 1900 1900 1900 1900 1000 4.0 4.0 4.0 4.0 50 50 50 50 50 0 0 0 0 0.0 1.00 0.93	EBL EBT EBR WBL WBT WBR Φ Φ Φ Φ 1900 1900 1900 1900 1900 1900 100 1.00 1.00 1.00 4.0 50 50 50 50 50 0 0 0 0 0 0 0.933 0.970 0.983 0.977 0.983 0.983 0.970 0.983 0.977 0.993 0.993 0.0 1619 0 0.869 0.6676 0 1470 0 0 1100 1.00 1.00 0.869 0.676 224 75 75 22 224 75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.0 3.9 0.71 0.80 0.87 0.64 11% 4% 5% 7% 13% 2% 0 450 0 0 3.0 3.0 3.0 2	EBL EBT EBR WBL WBT WBR NBL 4 4 4 N N 1900 1900 1900 1900 1900 1900 100 100 100 100 100 100 100 0 0 0 0 0 0 0 1100 1.00 1.00 1.00 1.00 1.00 1.00 0.993 0.988 0.970 0.94 0 170 0.993 0.988 0.970 0.724 0 1.00 0.993 0.988 0.723 0.997 0.94 0 0 1470 0 0 1.00 1.00 1.00 30 30 30 30 30 30 30 30 20173 0.89 0.71 0.80 0.87 0.64 49 75 202 202 20 100 30 30	PEL EBT EBR WBL WBT WBR NBL NPT 1900 1900 1900 1900 1900 1900 1900 4.0 1.00 1.0 <t< td=""><td>PIL EBL EBL FAL VAR VAR NBL NBL NBR 1900 1900 1900 1900 1900 1900 1900 1900 1900 4.0 4.0 4.0 4.0 4.0 4.0 4.0 50 50 50 50 50 50 50 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.938 0.950 0.97 0.940 9 15 9 15 0.97 0.940 0.911 0.0869 0.0566 0.234 7 0.933 0.970 0.967 7 1100 1.00</td><td>+ +</td><td>EBL EBT EBR WEL WBR NBT NBT</td></t<>	PIL EBL EBL FAL VAR VAR NBL NBL NBR 1900 1900 1900 1900 1900 1900 1900 1900 1900 4.0 4.0 4.0 4.0 4.0 4.0 4.0 50 50 50 50 50 50 50 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.938 0.950 0.97 0.940 9 15 9 15 0.97 0.940 0.911 0.0869 0.0566 0.234 7 0.933 0.970 0.967 7 1100 1.00	+ +	EBL EBT EBR WEL WBR NBT NBT

> 01	≪¶ ₀2	A 04
12 s	53 s	35 s
▲ ø5	● ø6	◆ ø8
12.	F0 .	9E .

	٦	-	7	1	-	•	1	Ť	1	¥	Ŧ	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1900	4 ↑ 1900	1900	1900	↑ 1900	1900	1900	1900	1900	1900	↑ 1900	1900
Lane Width (ft)	12	12	12	11	11	11	10	12	12	10	11	10
Storage Length (ft)	0		100	0		0	0		0	150		0
Storage Lanes	0	3.0	3.0	30	3.0	30	30	3.0	3.0	3.0	3.0	3.0
Leading Detector (ft)	50	50	50	50	50	3.0	3.0	50	50	50	50	3.0
Trailing Detector (ft)	0	0	0	0	0			0	0	0	0	
Lane Litil Factor	15	0.05	1.00	15	0.05	0.05	15	0.05	9	15	0.05	0.05
Ped Bike Factor	0.95	0.95	0.74	0.87	0.95	0.95	1.00	0.95	1.00	0.90	0.95	0.95
Frt			0.850	,,	0.945				0.850		0.988	
Fit Protected		0.990	4 100	0.950	0774	~	-	007/	4504	0.950	0400	
Satd. Flow (prot)	0	3239	1429	1517	2771	0	0	3374	1524	1574	3126	0
Satd, Flow (perm)	0	2490	1062	1323	2771	0	0	3374	1524	1420	3126	0
Right Turn on Red	Ū	2.00	No	.020	2	No	Ū		No		0.20	Yes
Satd. Flow (RTOR)											11	
Headway Factor	1.00	1.00	1.00	1.04	1.14	1.04	1.09	1.00	1.00	1.09	1.04	1.09
Link Speed (mpn)		402			30			161			30 677	
Travel Time (s)		9.1			8.0			3.7			15.4	
Volume (vph)	74	314	53	122	212	87	0	944	387	87	675	52
Confl. Peds. (#/hr)	169		128	128		169	140		163	163		140
Contl. Bikes (#/hr)	0.77	0.00	2	0.95	0.02	0.66	0.05	0.00	1	0.94	0.00	6
Heavy Vehicles (%)	19%	8%	0.78	0.85	0.93	0.66	0.25	0.92	0.94	0.84	0.99	24%
Parking (#/hr)	1070	070	1070	10 /0	6	6	0 /0	1 /0	0 /0	, /0	, /0	_ 70
Adj. Flow (vph)	96	357	68	144	228	132	0	1026	412	104	682	59
Lane Group Flow (vph)	0	453	68	144	360	0	0	1026	412	104	741	0
Protected Phases	Perm	3	Perm	Prot	22			1	pt+ov	Prot	1 /	
Permitted Phases	3	3	3	2	23				12	4	14	
Detector Phases	3	3	3	2	23			1	12	4	14	
Minimum Initial (s)	8.0	8.0	8.0	8.0				8.0		8.0		
Minimum Split (s)	38.0	38.0	38.0	14.0	FF A			30.0	00.0	14.0	05.0	
Total Split (S)	38.0	38.0	38.0	17.0	55.0 45.8%	0.0	0.0	49.0	55 0%	13.2%	65.0 54 2%	0.0
Maximum Green (s)	32.0	32.0	32.0	11.0	+0.0%	0.0%	0.0%	43.0	33.0%	10.0	J4.270	0.0%
Yellow Time (s)	3.0	3.0	3.0	3.0				3.0		3.0		
All-Red Time (s)	3.0	3.0	3.0	3.0				3.0		3.0		
Lead/Lag	Lead	Lead	Lead	Lag				Lead		Lag		
Lead-Lag Optimize?	20	20	20	20				20		20		
Recall Mode	None	None	None	None				C-Max		None		
Walk Time (s)	8.0	8.0	8.0					8.0				
Flash Dont Walk (s)	24.0	24.0	24.0					16.0				
Pedestrian Calls (#/hr)	76	76	76	14.0	40.2			74	65 7	12.0	647	
Actuated g/C Ratio		32.3	32.3	14.0	49.3			48.7	05.7	0.11	04.7	
v/c Ratio		0.68	0.24	0.81	0.32			0.75	0.49	0.61	0.44	
Control Delay		42.7	36.6	84.6	24.2			35.5	20.3	67.0	18.1	
Queue Delay		0.6	0.0	0.0	0.0			0.0	0.2	3.8	0.0	
I otal Delay		43.3	36.6	84.6	24.2			35.5	20.4	70.8	18.1	
LUS Approach Delay		D	D	F	C			21 2	С	E	24 G	
Approach Delay Approach LOS		42.4 D			41.5 D			31.2 C			24.6 C	
90th %ile Green (s)	32.0	32.0	32.0	11.0	5			43.0		10.0	Ŭ	
90th %ile Term Code	Max	Max	Max	Max				Coord		Max		
70th %ile Green (s)	32.0	32.0	32.0	11.0				43.0		10.0		
70th %ile Term Code	Ped	Ped	Ped	Max 11.0				Coord		Max		
50th %ile Term Code	SZ.0 Ped	SZ.0 Ped	SZ.U Ped	May				43.0 Coord		Max		
30th %ile Green (s)	32.0	32.0	32.0	11.0				43.0		10.0		
30th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
10th %ile Green (s)	18.6	18.6	18.6	11.0				56.4		10.0		
Stops (vph)	Gap	Gap	Gap	Max	102			Coord	240	Max	121	
Fuel Used(gal)		200	37	3	3			12	240	2	421	
CO Emissions (g/hr)		432	54	212	235			867	238	147	618	
NOx Emissions (g/hr)		84	10	41	46			169	46	29	120	
VOC Emissions (g/hr)		100	12	49	54			201	55	34	143	
Dilemma Vehicles (#)		126	0	111	0			366	200	0	191	
Queue Length 95th (ft)		208	m69	#202	131			453	293	129	232	
Internal Link Dist (ft)		322			271			81	200		597	
Turn Bay Length (ft)			100							150		
Base Capacity (vph)		726	310	177	1201			1368	834	171	1690	
Starvation Cap Reductn		0	0	0	0			0	0	0	0	
Storage Cap Reductn		0	0	0	0			0	03	25	0	
Reduced v/c Ratio		0.69	0.22	0.81	0.30			0.75	0.53	0.71	0.44	
Intersection Summary												
Area Type:	Other											
Cycle Length: 120												
Actuated Cycle Length: 1	20				_							
Offset: 92 (77%), Refere	nced to p	bhase 1:	NBSB,	Start of (Green							
Natural Cycle: 100	Coordina	ted										
Maximum v/c Ratio: 0.81	Jooruina	lou										
Intersection Signal Delay	: 32.8			I	ntersecti	on LOS:	С					
Intersection Capacity Uti	lization 8	5.9%		I	CU Leve	l of Serv	ice E					
Analysis Period (min) 15	0.000	do oozz	oit.		ho loss							
95th percentile volum	ne excee	us capad	vcles	eue may	De longe	u.						
m Volume for 95th per	centile a	Jeue is n	metered	by upst	ream sig	nal.						
				,	. o.g							
Splits and Phases: 10	0: Albany	/ Street a	& Mass	achusett	s Avenue	9						
↓₽ ₀1		4	7 02	2	ø3			- ↓ •	94			
			- w2		e J			E	- 1			

	۶	-	\mathbf{F}	4	-	•	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4				
Sign Control		Yield			Yield			Stop			Stop	
Volume (vph)	40	310	46	104	165	46	45	150	69	0	0	0
Peak Hour Factor	0.83	0.82	0.82	0.85	0.83	0.72	0.59	0.94	0.91	0.25	0.25	0.25
Hourly flow rate (vph)	48	378	56	122	199	64	76	160	76	0	0	0
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total (vph)	482	385	312									
Volume Left (vph)	48	122	76									
Volume Right (vph)	56	64	76									
Hadj (s)	0.02	0.05	-0.04									
Departure Headway (s)	5.6	5.8	6.2									
Degree Utilization, x	0.75	0.62	0.54									
Capacity (veh/h)	625	589	540									
Control Delay (s)	23.6	17.7	16.1									
Approach Delay (s)	23.6	17.7	16.1									
Approach LOS	С	С	С									
Intersection Summary												
Delay			19.7									
HCM Level of Service			С									
Intersection Capacity Utili	zation		69.6%	10	CU Leve	l of Serv	ice		С			
Analysis Period (min)			15									

	4	•	Ť	۲	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ň	1	ĥ			ą
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	18	7	275	76	52	119
Peak Hour Factor	0.64	0.88	0.90	0.73	0.81	0.80
Hourly flow rate (vph)	28	8	306	104	64	149
Pedestrians	29		11			14
Lane Width (ft)	12.0		12.0			12.0
Walking Speed (ft/s)	4.0		4.0			4.0
Percent Blockage	2		1			1
Right turn flare (veh)	_					
Median type	None					
Median storage veh)						
Upstream signal (ft)			395			
pX platoon unblocked	0.97	0.97	000		0.97	
vC conflicting volume	675	401			439	
vC1_stage 1 conf vol	0/0	401			400	
vC2_stage 2 conf vol						
vCu, unblocked vol	665	382			421	
tC single (s)	6.4	6.2			11	
tC, 3 ingle (3)	0.4	0.2			4.1	
tE (c)	35	33			22	
n (3)	0.0	0.0			2.2	
cM capacity (yeb/b)	378	627			1087	
civi capacity (ven/n)	310	027			1007	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1		
Volume Total	28	8	410	213		
Volume Left	28	0	0	64		
Volume Right	0	8	104	0		
cSH	378	627	1700	1087		
Volume to Capacity	0.07	0.01	0.24	0.06		
Queue Length 95th (ft	6	1	0	5		
Control Delay (s)	15.3	10.8	0.0	3.0		
Lane LOS	С	В		А		
Approach Delay (s)	14.3		0.0	3.0		
Approach LOS	В					
Internetion Operation						
Intersection Summary						
Average Delay			1.7			
Intersection Capacity	Jtilization		49.0%	IC	CU Leve	of Servic
Analysis Period (min)			15			

	•	-	\rightarrow	1	-		▲	Ť	1	>	ŧ	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2
Lane Configurations	1000	41»	1000	1000	4 P	1000	1000	1000	1000	1000	4	1000	
Total Lost Time (s)	1900	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	4.0	50	50	4.0	50	50	50	50	50	4.0	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0		
Lane Util Easter	15	0.05	9	15	0.05	9	15	1.00	9	15	1.00	9	
Frt	0.95	0.95	0.95	0.95	0.983	0.95	1.00	1.00	0.850	1.00	0.923	1.00	
Flt Protected		0.980			0.999			0.977	2.300		0.985		
Satd. Flow (prot)	0	2953	0	0	3109	0	0	1671	1454	0	1531	0	
Fit Permitted	0	0.548	0	0	0.943	•	•	0.758	1454	0	0.862	0	
Said. Flow (perm) Right Turn on Red	0	1651	U Yes	0	2935	Vec	0	1296	1454 Vec	0	1339	Vec	
Satd, Flow (RTOR)		7	res		11	res			118		66	res	
Headway Factor	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	
Link Speed (mph)		30			30			30			30		
Link Distance (ft)		337			412			200			383		
Volume (vpb)	1/6	7.7	24	Q	9.4 420	17	36	4.5	00	83	8.7	165	
Peak Hour Factor	0.83	0.81	0.75	0.67	0.80	0.69	0.64	0.78	0.84	0.86	0.47	0.92	
Heavy Vehicles (%)	1%	9%	21%	0%	3%	0%	0%	0%	0%	1%	6%	1%	
Adj. Flow (vph)	176	223	32	12	536	68	56	64	118	97	36	179	
Lane Group Flow (vph)	0	431	0	0	616	0	0	120	118	0	312	0	
Turn Type Protected Phases	D.P+P	1.6		Perm	4		Perm	E	Perm	Perm	E		0
Permitted Phases	б 1	16		1	1		5	5	5	5	5		2
Detector Phases	6	16		1	1		5	5	5	5	5		
Minimum Initial (s)	4.0			8.0	8.0		6.0	6.0	6.0	6.0	6.0		4.0
Minimum Split (s)	8.0			12.0	12.0		12.0	12.0	12.0	12.0	12.0		24.0
Total Split (s)	12.0	45.0	0.0	33.0	33.0	0.0	51.0	51.0	51.0	51.0	51.0	0.0	24.0
I otal Split (%) Maximum Green (s)	10.0%	31.5%	0.0%	21.5%	21.5%	0.0%	42.5%	42.5%	42.5%	42.5%	42.5%	0.0%	20%
Yellow Time (s)	3.0			29.0	29.0		43.0	45.0	45.0 3.0	43.0	43.0 3.0		3.0
All-Red Time (s)	1.0			1.0	1.0		3.0	3.0	3.0	3.0	3.0		1.0
Lead/Lag	Lag			Lead	Lead		Lead	Lead	Lead	Lead	Lead		Lag
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes
vehicle Extension (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
Walk Time (s)	iviax			C-IVIAX	C-Max		INOLIG	NONE	NONE	9(10vr)	INONE		7.0
Flash Dont Walk (s)													13.0
Pedestrian Calls (#/hr)													5
Act Effct Green (s)		74.1			66.1			29.1	29.1		29.1		
Actuated g/C Ratio		0.62			0.55			0.24	0.24		0.24		
V/C Katio		0.39			0.38			0.38	0.27		0.83		
Queue Delay		0.0			20.3			0.0	0.0		0.0		
Total Delay		14.1			28.3			39.2	6.6		51.6		
LOS		В			С			D	А		D		
Approach Delay		14.1			28.3			23.0			51.6		
Approach LOS	0.0	В		24.4	C 24 4		20.0	20.6	20.6	20.0	20 G		20.0
90th %ile Term Code	8.0 MaxR			Coord	Coord		Gan	39.6 Gan	Gan	Gan	Gan		20.0 Ped
70th %ile Green (s)	8.0			65.7	65.7		32.3	32.3	32.3	32.3	32.3		0.0
70th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
50th %ile Green (s)	8.0			71.5	71.5		26.5	26.5	26.5	26.5	26.5		0.0
50th %ile Term Code	MaxR			Coord	Coord		Gap	Gap 21 9	Gap 21 9	Gap 21.9	Gap 21.9		Skip
30th %ile Term Code	8.0 MaxR			Coord	Coord		∠1.ŏ Gan	∠1.ŏ Gap	∠1.ŏ Gap	∠1.ŏ Gan	∠I.ŏ Gan		Skip
10th %ile Green (s)	8.0			82.7	82.7		15.3	15.3	15.3	15.3	15.3		0.0
10th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
Stops (vph)		151			293			68	12		199		
Fuel Used(gal)		3			6			1	0		5		
CO Emissions (g/hr)		193			417			84	25		327		
VOC Emissions (g/nr)		38			81 07			10	5		64 76		
Dilemma Vehicles (#)		45			97			19	0		10		
Queue Length 50th (ft)		55			152			79	0		187		
Queue Length 95th (ft)		146			282			99	33		90		
Internal Link Dist (ft)		257			332			120			303		
Turn Bay Length (ft)		1400			4000			500	C 11		505		
Base Capacity (vph) Starvation Cap Reducto		1109			1622			508	641		565		
Spillback Cap Reducto		0			0			0	0		0		
Storage Cap Reductn		0			Ő			Ő	0		0		
Reduced v/c Ratio		0.39			0.38			0.24	0.18		0.55		
Intersection Summarv													
Area Type:	CBD												
Cycle Length: 120													
Actuated Cycle Length:	120		DUAR	O	-								
Unset: 72 (60%), Refere	nced to p	nase 1:E	BWB,	Start of (Jreen								
Control Type: Actuated-0	Coordinat	ed											
Maximum v/c Ratio: 0.83	3												
Intersection Signal Delay	y: 28.2			- li	ntersecti	on LOS:	С						
Intersection Capacity Uti	lization 6	0.3%		10	CU Leve	l of Serv	ice B						
Analysis Period (min) 15	1												
Splits and Phases: 10	Albany	Street &	Northa	moton St	reet								
	2 *	51158L 0						14					
₩ ø1	₹ № 2		Ŧ	[▶] ø5				2	▶ ø6				
33 s	24 s		51	\$				12	\$				

	٠	-	\rightarrow	1	-	•	1	Ť	1	-	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4000	4	4000	4000	4	4000	1000	†‡	4000	1000	≜ †}	4000
Ideal Flow (vphpl) Total Lost Time (s)	1900	1900 4 0	1900	1900	1900	1900 4 0	1900 4 0	1900 4 0	1900 4 0	1900 4 0	1900 4 0	1900 4 0
Leading Detector (ft)	50	50	4.0	50	50	4.0	50	50	4.0	50	50	1.0
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.94			0.95			0.92		0.92	0.95	
Frt Fit Protected		0.972			0.980		0.950	0.971		0.950	0.976	
Satd. Flow (prot)	0	1621	0	0	1705	0	1703	3083	0	1736	3195	0
Flt Permitted	-	0.790			0.725		0.173			0.247	0455	_
Satd. Flow (perm)	0	1293	0	0	1210	0	310	3083	0	416	3195	0
Satd, Flow (RTOR)		14	res		9	res		40	res		30	res
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	
Travel Time (s)		6.1			5.1			15.4			49.0	
Volume (vph)	44	172	47	103	269	54	86	650	140	56	796	142
Confl. Peds. (#/hr)	81		191	191		81	103		142	142		103
Peak Hour Factor	0.75	0.93	0.75	0.80	0.94	4 0.75	0,82	0.95	0,87	0.84	0,91	0,86
Heavy Vehicles (%)	3%	6%	7%	4%	6%	6%	6%	5%	4%	4%	5%	5%
Adj. Flow (vph)	59	185	63	129	286	72	105	684	161	67	875	165
Lane Group Flow (vph) Turn Type	0 Perm	307	0	0 Perm	487	0	105 pm+pt	845	0	67 pm+pt	1040	0
Protected Phases	. 6/11	4		. 6/11	8		5pt	2		Jpt	6	
Permitted Phases	4			8			2			6		
Detector Phases	4	4 8.0		8	8		5 6.0	2		1	6 8.0	
Minimum Split (s)	22.0	22.0		22.0	22.0		10.0	22.0		10.0	22.0	
Total Split (s)	36.0	36.0	0.0	36.0	36.0	0.0	11.0	53.0	0.0	11.0	53.0	0.0
Total Split (%)	36.0%	36.0%	0.0%	36.0%	36.0%	0.0%	11.0%	53.0%	0.0%	11.0%	53.0%	0.0%
Yellow Time (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	3.0	3.0		3.0	30		Yes	Yes		Yes	Yes	
Recall Mode	None	None		None	None		None	C-Max		Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0			7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Act Effct Green (s)	0	32.0		0	32.0		55.8	49.0		56.8	51.2	
Actuated g/C Ratio		0.32			0.32		0.56	0.49		0.57	0.51	
v/c Ratio		0.73			1.24		0.39	0.55		0.20	0.63	
Queue Delav		40.2			159.0		0.0	0.0		0.0	0.0	
Total Delay		40.2			159.0		13.1	18.6		10.0	19.8	
LOS		D			F		В	В		А	В	
Approach Delay		40.2			159.0			18.0			19.2	
90th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
90th %ile Term Code	Max	Max		Max	Max		Max	Coord		MaxR	Coord	
70th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
50th %ile Green (s)	32 0	32 0		32 0	32 0		7.0	49 0		7 0	49 0	
50th %ile Term Code	Hold	Hold		Max	Max		Max	Coord		MaxR	Coord	
30th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
30th %ile Term Code	Hold	Hold		Max 32.0	Max 32.0		Max	Coord		MaxR	Coord	
10th %ile Term Code	Hold	Hold		Max	Max		Skip	Coord		MaxR	Coord	
Stops (vph)		219			331		37	507		23	641	
Fuel Used(gal)		274			16		1	10		1	23	
NOx Emissions (g/hr)		53			222		12	135		16	314	
VOC Emissions (g/hr)		64			265		14	161		19	374	
Dilemma Vehicles (#)		0			0		0	0		0	0	
Queue Length 50th (ft)		165 #270			~386 #587		26 44	181		17	245	
Internal Link Dist (ft)		187			144			597		52	2074	
Turn Bay Length (ft)												
Base Capacity (vph)		423			393		271	1531		328	1651	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	Ő		0	Ő	
Reduced v/c Ratio		0.73			1.24		0.39	0.55		0.20	0.63	
Intersection Summary												
Area Type: 0	Other											
Oycle Length: 100	00											
Offset: 78 (78%), Referen	nced to p	hase 2:1	NBTL a	nd 6:SB	L, Start	of Gree	ı					
Natural Cycle: 70												
Maximum v/c Ratio: 1.24	oordina	ted										
Intersection Signal Delay	: 44.9			h	ntersecti	ion LOS:	D					
Intersection Capacity Util	ization 7	8.8%		10	CU Leve	el of Serv	ice D					
Analysis Period (min) 15												

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
 # 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Splits and Phases: 99: Harrison Avenue & Massachusetts Avenue

► e1	↑ ₀₂	→ ₀₄
11 s 🛛	53 s	36 s
▲ 05	↓ ∞6	★ ø8
11 s	53 s	36 s

	و	-	•	1	-	•	1	Ť	*		*	≻ ∔
Lane Group	EBL	EBT	EBF	WBL	WBT	WBR	NBL	NBT	NBR	S	BL	BL SBT
Lane Configurations	1900	4 ↑ 1900	1900	2100	† ₽ 2100	2100	1900	1900	1900	1900		↑ 1900
Lane Width (ft)	12	12	2 12	11	11	11	10	12	12	10		11
Storage Length (ft)	0		100	0		0	0		0	150		
Total Lost Time (s)	3.0	3.0) 3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0
Leading Detector (ft)	50	50) 50	50	50			50	50	50		50
Trailing Detector (ft) Turning Speed (mph)	15	0) (15	0	9	15	0	0	0 15		0
Lane Util. Factor	0.95	0.95	i 1.00	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.	95
Ped Bike Factor		0.98	0.79	0.87	0.98					0.83	0.	99
Frt Flt Protected		0.986	0.850	0.950	0.968				0.850	0.950	0.993	2
Satd. Flow (prot)	0	3274	1599	1753	3226	0	0	3471	1495	1518	3266	
Flt Permitted	-	0.683	100	0.950		0	•	0.174	1 105	0.950	0000	
Right Turn on Red	0	2220	NC 1267	1528	3226	No	0	3471	1495 No	1200	3266	Y
Satd. Flow (RTOR)											6	
Headway Factor	1.00	1.00	1.00	1.04	1.14	1.04	1.09	1.00	1.00	1.09	1.04	1.09
Link Distance (ft)		412			30			161			677	
Travel Time (s)		9.4	1		8.0			3.7			15.4	
Volume (vph)	64	165	134	182	447	113	0	692	213	38	872	35
Confl. Bikes (#/hr)	152		102	102		152	130		2	191		130
Peak Hour Factor	0.77	0.81	0.84	0.75	0.93	0.85	0.50	0.91	0.89	0.86	0.94	0.67
Heavy Vehicles (%)	13%	7%	1%	10%	6%	6%	0%	4%	8%	11%	4%	19%
Adj. Flow (vph)	83	204	160	243	481	133	0	760	239	44	928	52
Lane Group Flow (vph)	0	287	160	243	614	0	0	760	239	44	980	0
Turn Type	Perm		Perm	Prot	~ ~				pt+ov	Prot		
Protected Phases	3	3		2	23			1	12	4	14	
Detector Phases	3	3	3 3	2	23			1	12	4	14	
Minimum Initial (s)	8.0	8.0	8.0	8.0				8.0		8.0		
Minimum Split (s)	38.0	38.0	38.0	14.0	68.0	0.0	0.0	30.0	67.0	14.0	52.0	0.0
Total Split (%)	31.7%	31.7%	31.7%	25.0%	56.7%	0.0%	0.0%	30.8%	55.8%	12.5%	43.3%	0.0%
Maximum Green (s)	32.0	32.0	32.0	24.0				31.0		9.0		
Yellow Time (s)	3.0	3.0	3.0	3.0				3.0		3.0		
Lead/Lag	Lag	Lag	, 3.0 Lao	Lead				3.0		3.0		
Lead-Lag Optimize?												
Vehicle Extension (s)	2.0	2.0) 2.0	2.0				2.0		2.0		
Walk Time (s)	NONE 8.0	8.0	8.000	NONE				6-iviax 8.0		none		
Flash Dont Walk (s)	24.0	24.0	24.0					16.0				
Pedestrian Calls (#/hr)	86	86 30.0	86	22 E	57 5			85 41 5	69.1	12.0	56 F	
Actuated d/C Ratio		0.26	0.26	23.6	0.48			0.35	08.1	0.10	0.47	
v/c Ratio		0.50	0.49	0.71	0.40			0.63	0.28	0.29	0.64	
Control Delay		43.3	44.9	64.1	8.0			37.8	15.8	55.6	28.1	
Queue Delay		0.0 43.3	0.0	1.0 65.1	0.5 8.4			0.0	0.0	0.0	0.0 28.1	
LOS		-13.3 D) [E	A			D	B	E	C	
Approach Delay		43.9)		24.5			32.5			29.2	
Approach LOS	22.0	D 32.0)	24.0	С			C 31.0		0.0	С	
90th %ile Term Code	Ped	Ped	, 32.0 I Peo	Z4.0 Max				Coord		9.0 Max		
70th %ile Green (s)	32.0	32.0	32.0	24.0				31.0		9.0		
70th %ile Term Code	Ped	Ped	Peo	Max				Coord		Max		
50th %ile Green (s)	32.0 Ped	32.0 Ped	32.0 Per	20.8 Gan				Coord		9.0 Max		
30th %ile Green (s)	32.0	32.0	32.0	16.5				38.5		9.0		
30th %ile Term Code	Ped	Ped	Peo	Gap				Coord		Max		
10th %ile Green (s) 10th %ile Term Code	11.5 Gap	11.5 Gap	11.5 Gar	17.6 Gan				57.9 Coord		9.0 Max		
Stops (vph)	Cap	181	107	167	177			579	111	35	680	
Fuel Used(gal)		4	- 2	4	3			9	2	1	14	
CO Emissions (g/hr)		263	157	265	239			657	109	58	960 197	
VOC Emissions (g/nf)		51 61	31	52 61	47			152	21	13	222	
Dilemma Vehicles (#)		0) (0	0			0	0	0	0	
Queue Length 50th (ft)		95	100	183	54			273	99	32	314	
Internal Link Dist (ft)		m117 332	m141	206	271			358	151	67	411 597	
Turn Bay Length (ft)		502	100		211			01		150	001	
Base Capacity (vph)		648	370	394	1655			1201	891	152	1541	
Starvation Cap Reductn		0		38	575			0	19	0	0	
Storage Cap Reductn		0) (0	0			0	0	0	0	
Reduced v/c Ratio		0.44	0.43	0.68	0.57			0.63	0.27	0.29	0.64	
Intersection Summary												
Area Type:	Other											
Cycle Length: 120 Actuated Cycle Length:	120											
Offset: 57 (48%), Refere	nced to p	phase 1:	:NBSB,	Start of (Green							
Natural Cycle: 100												
Control Type: Actuated-	Coordina	ted										
Intersection Signal Delay	y: 31.0			1	ntersecti	on LOS:	С					
Intersection Capacity Uti	ilization 8	31.9%		I	CU Leve	l of Serv	ice D					
Analysis Period (min) 15	contilo ~		motore	hy unch	room cia	nal						
in volume for 95th per	centile di	ueue is f	metere	by upst	ream sig	ıdı.						
Splits and Phases: 10	0: Alban	y Street	t & Mass	achusett	s Ave							
↓↑ _{ø1}	47	7 @2		÷	► ø3			4	ø4			
					~~		_					

	٦	-	\mathbf{F}	4	-	•	٩	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢				
Sign Control		Yield			Yield			Stop			Stop	
Volume (vph)	33	213	28	170	283	44	53	158	50	0	0	0
Peak Hour Factor	0.92	0.93	0.78	0.77	0.91	0.69	0.66	0.90	0.89	0.25	0.25	0.25
Hourly flow rate (vph)	36	229	36	221	311	64	80	176	56	0	0	0
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total (vph)	301	596	312									
Volume Left (vph)	36	221	80									
Volume Right (vph)	36	64	56									
Hadj (s)	-0.03	0.05	-0.05									
Departure Headway (s)	5.9	5.5	6.2									
Degree Utilization, x	0.49	0.91	0.54									
Capacity (veh/h)	586	636	548									
Control Delay (s)	14.4	40.5	16.4									
Approach Delay (s)	14.4	40.5	16.4									
Approach LOS	В	E	С									
Intersection Summary												
Delay			27.8									
HCM Level of Service			D									
Intersection Capacity Utili	zation		80.5%	10	CU Leve	l of Serv	ice		D			
Analysis Period (min)			15									

	¥	×	Ť	۲	6	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۲	1	ĥ			۰
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	55	60	223	7	10	199
Peak Hour Factor	0.76	0.83	0.93	0.58	0.50	0.84
Hourly flow rate (vph)	72	72	240	12	20	237
Pedestrians	43		13			27
Lane Width (ft)	12.0		12.0			12.0
Walking Speed (ft/s)	4.0		4.0			4.0
Percent Blockage	4		1			2
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)			383			
pX, platoon unblocked						
vC. conflicting volume	579	316			295	
vC1, stage 1 conf vol	5.0	5.0			200	
vC2, stage 2 conf vol						
vCu, unblocked vol	579	316			295	
tC, single (s)	6.4	6.2			4.1	
tC 2 stage (s)	0.4	0.2				
tF (s)	3.5	33			22	
n0 queue free %	84	89			98	
cM capacity (veh/h)	451	687			1232	
	401	507			1202	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1		
Volume Total	72	72	252	257		
Volume Left	72	0	0	20		
Volume Right	0	72	12	0		
cSH	451	687	1700	1232		
Volume to Capacity	0.16	0.11	0.15	0.02		
Queue Length 95th (ft)	14	9	0	1		
Control Delay (s)	14.5	10.9	0.0	0.8		
Lane LOS	В	В		А		
Approach Delay (s)	12.7		0.0	0.8		
Approach LOS	В					
Intersection Summary						
Average Delay			3.1			
Intersection Capacity Uti	lization		36.6%	10	CU Level	of Servi
Analysis Period (min)			15			
			15			

	٦	-	\mathbf{r}	1	-	•	•	Ť	1	- \	Ŧ	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2
Lane Configurations		4î»			4 î k			ب ا	1		4		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Leading Detector (ft)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0		
Turning Speed (mph)	15		9	15		9	15		9	15		9	
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Fit Protected		0.985			0.974			0.994	0.850		0.942		
Satd. Flow (prot)	0	2977	0	0	2964	0	0	1680	1275	0	1529	0	
Flt Permitted		0.670			0.785			0.958			0.864		
Satd. Flow (perm)	0	2025	0	0	2336	0	0	1620	1275	0	1344	0	
Right Turn on Red			Yes			Yes			Yes		~~	Yes	
Satd. Flow (RTOR)	1 1 4	11	1 1 4	1 1 4	21	1 1 4	1 1 /	1 1 4	1 1 4	1 1 /	32	1 1 4	
Link Speed (mph)	1.14	30	1.14	1.14	30	1.14	1.14	30	1.14	1.14	1.14	1.14	
Link Distance (ft)		318			402			243			395		
Travel Time (s)		7.2			9.1			5.5			9.0		
Volume (vph)	230	441	67	27	249	57	12	82	29	54	34	67	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adi Flow (vph)	2%	/% 470	13%	0%	271	2%	9%	0%	14%	4%	0%	5%	
Lane Group Flow (vph)	250	802	13	29	362	02	13	102	32	59	169	13	
Turn Type	D.P+P	002	0	Perm	502	0	Perm	102	Perm	Perm	103	U	
Protected Phases	6	16			1			5			5		2
Permitted Phases	1			1			5	-	5	5	-		_
Detector Phases	6	16		1	1		5	5	5	5	5		
Minimum Initial (s)	4.0			8.0	8.0		8.0	8.0	8.0	8.0	8.0		4.0
Minimum Split (s)	8.0	50.0	0.0	12.0	12.0	0.0	14.0	14.0	14.0	14.0	14.0	0.0	24.0
Total Split (S)	15.0%	58.0	0.0	40.0	40.0	0.0	38.0	38.0	38.0	38.0	38.0	0.0	24.0
Maximum Green (s)	13.0%	40.3%	0.0%	36.0	36.0	0.0%	32.0	32.0	32.0	31.7%	31.7%	0.0%	20%
Yellow Time (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
All-Red Time (s)	1.0			1.0	1.0		3.0	3.0	3.0	3.0	3.0		1.0
Lead/Lag	Lag			Lead	Lead		Lead	Lead	Lead	Lead	Lead		Lag
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes
Vehicle Extension (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	None			C-Max	C-Max		None	None	None	None	None		None
Walk Time (s)													7.0
Flash Dont Walk (s)													13.0
Act Effet Green (s)		8/ 1			70.1			10.1	10 1		10.1		5
Actuated g/C Ratio		0 70			0.58			0.16	0.16		0.16		
v/c Ratio		0.52			0.26			0.40	0.10		0.70		
Control Delav		10.6			21.8			48.1	13.9		53.2		
Queue Delay		0.0			0.0			0.0	0.0		0.0		
Total Delay		10.6			21.8			48.1	13.9		53.2		
LOS		В			С			D	В		D		
Approach Delay		10.6			21.8			40.0			53.2		
Approach LOS		В			С			D			D		
90th %ile Green (s)	14.0			42.7	42.7		25.3	25.3	25.3	25.3	25.3		20.0
South %ile Ferm Code	Max			Coord	C00rd		Gap	Gap	Gap	Gap	Gap		Ped
70th %ile Term Code	14.0 May			Coord	Coord		20.3 Gap	20.3 Gap	20.3 Gap	20.3 Gap	20.3 Gan		0.0 Skip
50th %ile Green (s)	14 0			75.1	75.1		16.9	16.9	16.9	16.9	16.9		0.0
50th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
30th %ile Green (s)	14.0			78.3	78.3		13.7	13.7	13.7	13.7	13.7		0.0
30th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
10th %ile Green (s)	14.0			82.8	82.8		9.2	9.2	9.2	9.2	9.2		0.0
10th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
Stops (vph)		279			245			81	8		116		
Fuel Used(gal)		5			4			2	0		3		
CO Emissions (g/hr)		347			271			108	13		196		
		68			53			21	2		38		
Dilemma Vehiclos (#)		08			63			25	3		45		
Queue Length 50th (ft)		82			105			72	0		102		
Queue Length 95th (ft)		268			174			117	27		166		
Internal Link Dist (ft)		238			322			163	21		315		
Turn Bay Length (ft)													
Base Capacity (vph)		1534			1374			459	384		404		
Starvation Cap Reductn		0			0			0	0		0		
Spillback Cap Reductn		0			0			0	0		0		
Storage Cap Reductn		0			0			0	0		0		
Reduced V/C Ratio		0.52			0.26			0.22	0.08		0.42		
Intersection Summary		-		-	-								
Area Type:	CBD												
Cycle Length: 120													
Actuated Cycle Length:	120			0	-								
Offset: 76 (63%), Refere	nced to p	hase 1:E	EBWB,	Start of (Green								
Natural Cycle: 80	Coordinat	bod											
Maximum v/c Ratio: 0.70	Coordinat	eu											
Intersection Signal Delay	v: 21.0			- b	ntersectiv	on LOS	C						
Intersection Capacity 1 Iti	lization 6	0.4%		10	CU Leve	l of Serv	/ice B						
Analysis Period (min) 15		2.170											
Splits and Phases: 3:	Albany S	treet & N	Northam	pton Str	eet								
				-1 4	_			A					

	٠	-	\rightarrow	1	-		1	Ť	1	•		▶ ≻ ∔
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR		SBL	SBL SBT
Lane Configurations	1900	4 → 1900	1900	1900	4 1900	1900	1900	↑ 1900	1900		1900	ħ ♠î 1900 1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0 4.0
Leading Detector (ft) Trailing Detector (ft)	50 0	50 0		50 0	50 0		50 0	50 0			50 0	50 50 0 0
Turning Speed (mph)	15	4.00	9	15	4.00	9	15	0.05	9	1	5	15
Ped Bike Factor	1.00	0.96	1.00	1.00	1.00	1.00	0.96	0.95	0.95	1.00		0.95
Frt		0.987			0.972			0.969				0.981
Fit Protected Satd, Flow (prot)	0	0.994	0	0	0.989	0	0.950	2953	0	0.950		3147
Flt Permitted	Ű	0.905	Ŭ	Ŭ	0.672	Ű	0.181	2000		0.108		0111
Satd. Flow (perm) Right Turn on Red	0	1559	0 Ves	0	1103	0 Ves	323	2953	0 Ves	199		3147
Satd. Flow (RTOR)		6	163		13	163		45	163			23
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1	.00
Link Distance (ft)		266			224			677			215	4
Travel Time (s)		6.0			5.1			15.4			49.0	
Volume (vph)	50	343	43	202	172	62 75	110	914	234	134	814	
Confl. Bikes (#/hr)	10		5	202		2	115		7	100		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adi, Flow (vph)	54	373	5% 47	7%	13%	2% 67	2% 55	993	4% 254	3% 146	885	1
Lane Group Flow (vph)	0	474	0	0	327	0	55	1247	0	146	1017	
Turn Type Protected Phases	Perm	1		Perm	8		pm+pt	2		pm+pt	6	
Permitted Phases	4	-		8	0		2	2		6	0	
Detector Phases	4	4		8	8		5	2		1	6	
Minimum Initial (s)	8.0	8.0		8.0	8.0		6.0	8.0		6.0	8.0	
Total Split (s)	35.0	35.0	0.0	35.0	35.0	0.0	12.0	53.0	0.0	12.0	53.0	0.0
Total Split (%)	35.0%	35.0%	0.0%	35.0%	35.0%	0.0%	12.0%	53.0%	0.0%	12.0%	53.0%	0.0%
Maximum Green (s)	31.0	31.0		31.0	31.0		8.0	49.0		8.0	49.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		None	C-Max		Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0			7.0			7.0	
Pedestrian Calls (#/hr)	0	0		0	0			0			0	
Act Effct Green (s)		31.0			31.0		55.8	49.0		58.6	52.2	
Actuated g/C Ratio		0.31			0.31		0.56	0.49		0.59	0.52	
Control Delay		69.8			67.5		9.7	28.3		22.7	19.1	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		69.8			67.5		9.7	28.3		22.7	19.1 B	
Approach Delay		69.8			67.5		A	27.5		U	19.6	
Approach LOS		E			E			С			В	
90th %ile Green (s) 90th %ile Term Code	31.0 Max	31.0 Max		31.0 Max	31.0 Max		8.0 Max	49.0		8.0 MayP	49.0	
70th %ile Green (s)	31.0	31.0		31.0	31.0		7.2	49.0		8.0	49.8	
70th %ile Term Code	Max	Max		Max	Max		Gap	Coord		MaxR	Coord	
50th %ile Green (s)	31.0 Max	31.0 Max		31.0 Max	31.0 Max		6.7 Gap	49.0		8.0 MayP	50.3 Coord	
30th %ile Green (s)	31.0	31.0		31.0	31.0		6.2	49.0		8.0	50.8	
30th %ile Term Code	Max	Max		Max	Max		Gap	Coord		MaxR	Coord	
10th %ile Green (s)	31.0 Max	31.0 Max		31.0 Hold	31.0 Hold		0.0 Skip	49.0		8.0 MayP	61.0	
Stops (vph)	IVIAX	370		Holu	247		20	932		61	630	
Fuel Used(gal)		9			6		0	18		3	23	
CO Emissions (g/hr)		639 124			421		34	1246		224	1597	
VOC Emissions (g/hr)		148			98		8	289		52	370	
Dilemma Vehicles (#)		0			0		0	0		0	0	
Queue Length 50th (ft)		294 #503			195 #370		28	341		37 #88	233	
Internal Link Dist (ft)		186			144		20	597		#00	2074	
Turn Bay Length (ft)												
Base Capacity (vph) Starvation Cap Reducto		487			351		300	1470		241	1653	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced V/C Ratio		0.97			0.93		0.18	0.85		0.61	0.62	
Intersection Summary	Other											
Cycle Length: 100	Jtner											
Actuated Cycle Length: 1	00											
Offset: 32 (32%), Referen	nced to p	bhase 2:	NBTL ar	nd 6:SBT	ΓL, Start	of Gree	n					
Natural Cycle: 80	Coordinat	ted										
Maximum v/c Ratio: 0.97	Jooruma	leu										
Intersection Signal Delay	: 34.8	1 00/		h	ntersectio	on LOS:	C					
Analysis Period (min) 15	iization 8	1.2%		10	U Leve	of Serv	nce D					
 # 95th percentile volum 	ne excee	ds capa	city, que	ue may	be longe	r.						
Queue shown is maxi	mum afte	er two cy	cles.									
Splits and Descret 00	Horris	n A	0 8 14-	ooch	tto Au-							
Spins and Phases: 99:	. narrisoi	n Avenu	e a Ivias	saunuse	aus Aven	ue						
➤												

	· 64
12 s 53 s 3	35 s
▲ ø5 ♣ ø6	★ ø8
12 s 53 s 3	35 s

	٦	-	•	1	-	•	1	Ť	1	>	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Ideal Flow (vphpl)	1900	4 1 1900	1900	1900	† ₽ 1900	1900	1900	1900	1 900	ា 1900	↑ 1900	1900
Lane Width (ft)	12	12	12	11	11	11	10	12	12	10	11	10
Storage Length (ft) Storage Lanes	0		100	0		0	0		0	150 1		0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Leading Detector (ft)	50	50	50	50	50			50	50	50	50	
Turning Speed (mph)	15	U	9	15	0	9	15	0	9	15	0	9
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor		0.98	0.74	0.88	0.96				0,850	0.91	0.98	
Flt Protected		0.992	0.000	0.950	0.002				0.000	0.950	0.000	
Satd. Flow (prot)	0	3261	1429	1517	2814	0	0	3374	1524	1574	3138	0
Satd, Flow (perm)	0	2605	1062	1338	2814	0	0	3374	1524	0.950	3138	0
Right Turn on Red	0	2000	No		2014	No	Ū	5074	No		2.00	Yes
Satd. Flow (RTOR)	1 00	1 00	1 00	1.04	1 1 4	1.04	1.00	1 00	1 00	1.00	10	1.00
Link Speed (mph)	1.00	30	1.00	1.04	30	1.04	1.09	30	1.00	1.03	30	1.09
Link Distance (ft)		402			351			161			677	
Volume (vpb)	78	9.1 301	56	158	8.0	108	0	3.7 1012	591	164	15.4 710	55
Confl. Peds. (#/hr)	169	381	128	128	201	169	140	1012	163	163	110	140
Confl. Bikes (#/hr)			2		0.00	0.07	0.00	0.00	1	0.00	0.07	6
Peak Hour Factor Heavy Vehicles (%)	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Parking (#/hr)	.070	070	1070	.070	6	6	570	170	570	1 70	. 70	- + /0
Adj. Flow (vph)	85	425	61	172	251	117	0	1100	642	178	772	60
Larie Group Flow (vph)	0 Perm	510	61 Perm	172 Prot	368	0	0	1100	642 pt+ov	178 Prot	832	0
Protected Phases	. 6111	3	i enn	2	23			1	12	4	14	
Permitted Phases	3	0	3	0	0.0				1.0	4	4.4	
Minimum Initial (s)	80	8.0	80	2 8.0	23			1 8 0	12	4 8 0	14	
Minimum Split (s)	38.0	38.0	38.0	14.0				30.0		14.0		
Total Split (s)	38.0	38.0	38.0	17.0	55.0	0.0	0.0	49.0	66.0	16.0	65.0	0.0
Total Split (%) Maximum Green (s)	31.7%	31.7%	31.7%	14.2%	45.8%	0.0%	0.0%	40.8%	55.0%	13.3%	54.2%	0.0%
Yellow Time (s)	32.0	32.0	32.0	3.0				43.0		3.0		
All-Red Time (s)	3.0	3.0	3.0	3.0				3.0		3.0		
Lead/Lag	Lead	Lead	Lead	Lag				Lead		Lag		
Vehicle Extension (s)	2.0	2.0	2.0	2.0				2.0		2.0		
Recall Mode	None	None	None	None				C-Max		None		
Walk Time (s)	8.0	8.0	8.0					8.0				
Pedestrian Calls (#/br)	24.0	∠4.0 76	24.0					74				
Act Effct Green (s)	10	32.4	32.4	14.0	49.4			48.6	65.6	13.0	64.6	
Actuated g/C Ratio		0.27	0.27	0.12	0.41			0.40	0.55	0.11	0.54	
v/c Ratio		0.73	0.21	0.97	0.32 24.3			0.80	0.77	1.04	0.49	
Queue Delay		0.7	0.0	0.0	0.0			0.0	1.4	57.2	0.0	
Total Delay		44.0	35.1	114.0	24.3			37.9	31.5	189.3	19.0	
LOS Approach Delay		D	D	F	C			25 5	С	F	40.0	
Approach LOS		43.0 D			52.8 D			35.5 D			49.0 D	
90th %ile Green (s)	32.0	32.0	32.0	11.0	5			43.0		10.0	2	
90th %ile Term Code	Max	Max	Max	Max				Coord		Max		
70th %ile Term Code	32.0 Max	Max	32.0 Max	Max				43.0 Coord		Max		
50th %ile Green (s)	32.0	32.0	32.0	11.0				43.0		10.0		
50th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
30th %ile Green (s) 30th %ile Term Code	32.0 Ped	32.0 Ped	32.0 Ped	11.0 Max				43.0 Coord		10.0 Max		
10th %ile Green (s)	18.8	18.8	18.8	11.0				56.2		10.0		
10th %ile Term Code	Gap	Gap	Gap	Max				Coord		Max		
Stops (vph) Fuel Used(gal)		342	38	134	218 4			868	462	135	462	
CO Emissions (g/hr)		524	55	338	266			970	483	421	668	
NOx Emissions (g/hr)		102	11	66	52			189	94	82	130	
VOC Emissions (g/hr)		121	13	78	62			225	112	98	155	
Queue Length 50th (ft)		145	30	135	95			405	393	~150	212	
Queue Length 95th (ft)		204	m65	#278	133			498	571	#295	268	
Internal Link Dist (ft)		322	400		271			81		150	597	
Furn Bay Length (ft) Base Capacity (vph)		760	100	177	1219			1367	834	150	1695	
Starvation Cap Reductn		20	0	0	0			0	0	0	0	
Spillback Cap Reductn		67	0	0	0			0	68	22	0	
Storage Cap Reductn		0 74	0 20	0 97	0 30			0	0.84	0	0 40	
		0.74	0.20	0.97	0.30			0.00	0.04	1.13	0.43	
Area Type:	Other											
Cycle Length: 120	Guidi											
Actuated Cycle Length: 1	120			•								
Offset: 92 (77%), Referen	nced to p	phase 1:	:NBSB,	Start of C	Green							
Control Type: Actuated-0	Coordina	ted										
Maximum v/c Ratio: 1.04	l											
Intersection Signal Delay	/: 42.6	0.001		l	ntersecti	on LOS:	D					
Intersection Capacity Util Analysis Period (min) 15	lization 9	0.2%			CU Leve	of Serv	ICE E					
 Volume exceeds cap 	acity, qu	eue is th	heoretic	ally infini	te.							
Queue shown is maxi	imum afte	er two cy	ycles.									
# 95th percentile volum	ne excee	ds capa	city, que	eue may	be longe	r.						
Queue snown is maxi	contile or	er two cy	ycies.	by upetr	eam sig	hal						

Splits and Phases: 100: Albany Street & Massachusetts Avenue

	٨	-	\mathbf{r}	1	-	•	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$				
Sign Control		Yield			Yield			Stop			Stop	
Volume (vph)	42	364	48	109	201	48	47	158	73	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	46	396	52	118	218	52	51	172	79	0	0	0
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total (vph)	493	389	302									
Volume Left (vph)	46	118	51									
Volume Right (vph)	52	52	79									
Hadj (s)	0.03	0.07	-0.06									
Departure Headway (s)	5.6	5.8	6.2									
Degree Utilization, x	0.77	0.63	0.52									
Capacity (veh/h)	629	590	538									
Control Delay (s)	24.5	17.9	15.7									
Approach Delay (s)	24.5	17.9	15.7									
Approach LOS	С	С	С									
Intersection Summary												
Delay			20.1									
HCM Level of Service			С									
Intersection Capacity Utili	zation		75.6%	IC	CU Leve	l of Serv	ice		D			
Analysis Period (min)			15									

	4	×	Ť	1	6	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1	1	4Î			ę
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	18	7	289	76	52	125
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	20	8	314	83	57	136
Pedestrians	29		11			14
Lane Width (ft)	12.0		12.0			12.0
Walking Speed (ft/s)	4.0		4.0			4.0
Percent Blockage	2		1			1
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)			395			
pX, platoon unblocked	0.98	0.98			0.98	
vC, conflicting volume	644	398			426	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	635	383			411	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	95	99			95	
cM capacity (veh/h)	399	629			1103	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1		
Volume Total	20	8	397	192		
Volume Left	20	0	0	57		
Volume Right	0	8	83	0		
cSH	399	629	1700	1103		
Volume to Capacity	0.05	0.01	0.23	0.05		
Queue Length 95th (ft)	4	1	0	4		
Control Delay (s)	14.5	10.8	0.0	2.8		
Lane LOS	В	В		А		
Approach Delay (s)	13.5		0.0	2.8		
Approach LOS	В					
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Util	ization		50.1%	1	CU Level	l of Servic
Analysis Period (min)			15			
			10			

	٦	-	\mathbf{r}	4	←	•	1	t	1	1	ŧ	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2
Lane Configurations	1000	4 î }	1000	1000	41	1000	1000	4	1000	1000	4	1000	
Total Lost Time (s)	4.0	1900	1900	1900	1900	1900	1900	1900	4.0	4.0	4.0	1900 4.0	
Leading Detector (ft)	50	50		50	50		50	50	50	50	50		
Trailing Detector (ft)	0	0	0	0	0	٥	0	0	0	0	0	٥	
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		0.990			0.988			0.000	0.850		0.916		
Fit Protected Satd, Flow (prot)	0	2960	0	0	0.999	0	0	0.980	1454	0	0.985	0	
Flt Permitted	U	0.552	0	U	0.948	U	U	0.810	.404	U	0.869	U	
Satd. Flow (perm)	0	1666	0	0	2963	0	0	1385	1454	0	1343	0	
Right Turn on Red Satd, Flow (RTOR)		6	Yes		7	Yes			Yes 113		81	Yes	
Headway Factor	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	
Link Speed (mph)		30			30			30			30		
LINK DISTANCE (ft)		337			412 9.4			200			383		
Volume (vph)	153	207	25	8	554	49	38	53	104	87	18	173	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Heavy Vehicles (%)	1%	9% 225	21%	0%	3%	0%	0%	0%	0%	1%	6%	1%	
Lane Group Flow (vph)	0	418	0	9	664	0	0	99	113	0	303	001	
Turn Type	D.P+P		2	Perm		-	Perm		Perm	Perm		-	
Protected Phases	6	16		4	1		-	5	-	-	5		2
Detector Phases	1	16		1	1		5	5	5	5	5		
Minimum Initial (s)	4.0	10		8.0	8.0		6.0	6.0	6.0	6.0	6.0		4.0
Minimum Split (s)	8.0	45.0		12.0	12.0	0.0	12.0	12.0	12.0	12.0	12.0		24.0
Total Split (s) Total Split (%)	12.0	45.0 37.5%	0.0	33.0 27.5%	33.0 27.5%	0.0	51.0 42 5%	51.0 42 5%	51.0 42 5%	51.0 42 5%	51.0 42 5%	0.0	24.0
Maximum Green (s)	8.0	51.5%	0.0%	29.0	29.0	0.0%	45.0	45.0	45.0	45.0	45.0	0.0%	20%
Yellow Time (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
All-Red Time (s)	1.0			1.0	1.0		3.0	3.0	3.0	3.0	3.0		1.0
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes
Vehicle Extension (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	Max			C-Max	C-Max		None	None	None	None	None		None
VValk Time (s)													7.0
Pedestrian Calls (#/hr)													13.0
Act Effct Green (s)		76.2			68.2			27.0	27.0		27.0		Ŭ
Actuated g/C Ratio		0.64			0.57			0.22	0.22		0.22		
Control Delay		0.36			0.39			0.32	0.27		0.83		
Queue Delay		0.0			0.3			0.0	0.0		0.0		
Total Delay		12.8			27.7			38.9	7.2		50.1		
LOS Approach Delay		12.8			C 27 7			22 0	A		D		
Approach LOS		12.0 B			21.1 C			22.0 C			50.1 D		
90th %ile Green (s)	8.0			36.7	36.7		37.3	37.3	37.3	37.3	37.3		20.0
90th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Ped
70th %ile Term Code	8.0 MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
50th %ile Green (s)	8.0			73.6	73.6		24.4	24.4	24.4	24.4	24.4		0.0
50th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
30th %ile Green (s)	8.0			78.2	78.2		19.8	19.8	19.8	19.8	19.8		0.0
10th %ile Green (s)	8.0			84.5	84.5		Gap 13.5	Gap 13.5	13.5	Gap 13.5	Gap 13.5		0.0
10th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
Stops (vph)		157			352			72	15		197		
Fuel Used(gal)		201			511			1 88	29		333		
NOx Emissions (g/hr)		39			99			17	20		65		
VOC Emissions (g/hr)		47			118			20	6		77		
Dilemma Vehicles (#)		0			0			0	0		0		
Queue Length 50th (ft)		49			149			65 101	0		245		
Internal Link Dist (ft)		257			345			120	41		303		
Turn Bay Length (ft)													
Base Capacity (vph)		1146			1687			542	638		575		
Spillback Can Reducto		0			457			0	0		0		
Storage Cap Reductn		0			0			0	0		0		
Reduced v/c Ratio		0.36			0.54			0.18	0.18		0.53		
Intersection Summary													
Area Type:	CBD												
Cycle Length: 120	120												
Offset: 72 (60%). Refere	nzed to p	hase 1.	EBWB	Start of (Green								
Natural Cycle: 75			,	Diant of C									
Control Type: Actuated-	Coordinat	ed											
Intersection Signal Dela	o v: 27 3			l.	ntersecti	on LOS.	С						
Intersection Capacity Ut	ilization 6	6.1%		10	CU Leve	l of Serv	rice C						
Analysis Period (min) 15	5												
Splits and Phases: 40		Street P	Northa	moton Ci	root								
opiits and Phases: 10	. Albany S	street &	Northa	mpton St	reet								
→ ø1	. ₹ k ₀2		I ₹	₽ ø5				2	₽ ø6				
\$	14.5		- B	0				12	· · · · · · · · · · · · · · · · · · ·				

	٠	-	\rightarrow	1	-	•	1	Ť	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1000	4	1000	1000	4	1000	1000	†	1000	1000	†	1000
Total Lost Time (s)	1900	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	4.0	50	50	4.0	50	50	4.0	50	50	1.0
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.95			0.95			0.93		0.95	0.96	
Frt Elt Brotoctad		0.977			0.976		0.050	0.974		0.050	0.978	
Satd, Flow (prot)	0	1651	0	0	1693	0	1703	3115	0	1736	3213	0
Flt Permitted	5	0.787	5	5	0.758	Ŭ	0.154	0.10	J	0.190	0210	Ŭ
Satd. Flow (perm)	0	1310	0	0	1262	0	276	3115	0	329	3213	0
Right Turn on Red		11	Yes		10	Yes		25	Yes		20	Yes
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	28	1.00
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		267			224			677			2154	
I ravel Time (s)	40	6.1	40	110	5.1	04	00	15.4	150	70	49.0	140
Confl. Peds. (#/hr)	46 81	194	49	191	318	94 81	90 103	753	158	142	808	149
Confl. Bikes (#/hr)	01		191	191		4	103		7	(74		1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	3%	6%	7%	4%	6%	6%	6%	5%	4%	4%	5%	5%
Aaj. Flow (vph)	50	211	53	120	346	102	98	818	172	78	933	162
Turn Type	Perm	314	0	Perm	500	0	pm+pt	390	0	pm+pt	1090	U
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8	~		2	~		6	-	
Detector Phases	4	4 80		8	8		5	2		1	80	
Minimum Split (s)	22.0	22.0		22.0	22.0		10.0	22.0		10.0	22.0	
Total Split (s)	36.0	36.0	0.0	36.0	36.0	0.0	11.0	53.0	0.0	11.0	53.0	0.0
Total Split (%)	36.0%	36.0%	0.0%	36.0%	36.0%	0.0%	11.0%	53.0%	0.0%	11.0%	53.0%	0.0%
Maximum Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag	1.0						Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Walk Time (s)	NONE 7.0	NONE		NONE	NONE 7.0		INONE	C-Max		мах	C-Max	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0			0			0	
Act Effct Green (s)		32.0			32.0		55.8	49.0		56.8	51.2	
Actuated g/C Ratio		0.32			0.32		0.56	0.49		0.57	0.51	
Control Delav		41.1			214.4		13.3	20.6		11.0	20.5	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		41.1			214.4		13.3	20.6		11.0	20.5	
LOS		D			F		В	C		В	C	
Approach LOS		41.1 D			214.4			19.9 R			19.9 R	
90th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
90th %ile Term Code	Max	Max		Max	Max		Max	Coord		MaxR	Coord	
70th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
70th %ile Ferm Code	Max	Max		Max	Max		Max	Coord		MaxR	Coord	
50th %ile Term Code	Hold	Hold		Max	Max		7.0 Max	49.0 Coord		MaxR	49.0 Coord	
30th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
30th %ile Term Code	Hold	Hold		Max	Max		Max	Coord		MaxR	Coord	
10th %ile Green (s)	32.0	32.0		32.0	32.0		0.0	49.0		7.0	60.0	
Stops (vph)	Hold	Hold 243		мах	Max 394		SKIP	631		IVIAXR	C00rd	
Fuel Used(gal)		4			26		1	12		2	25	
CO Emissions (g/hr)		305			1812		65	847		107	1749	
NOx Emissions (g/hr)		59			353		13	165		21	340	
VUC Emissions (g/hr)		71			420		15	196		25	405	
Queue Length 50th (ft)		171			~482		25	229		19	265	
Queue Length 95th (ft)		#298			#693		46	298		38	341	
Internal Link Dist (ft)		187			144			597			2074	
Turn Bay Length (ft)		407			440		25.4	15.44		200	1050	
Starvation Can Reducto		427			412		254	1544		286	1659	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.74			1.38		0.39	0.64		0.27	0.66	
Intersection Summary												
Area Type: 0	Other											
Cycle Length: 100	100											
Actuated Cycle Length: 1 Offset: 78 (78%) Referen	nced to r	hase 2.	NBTL	nd 6.SP	TI Start	of Gree	n					
Natural Cycle: 90	1000 10	J 1030 Z.	ND I L al	10 0.00	. L, Stall	or Gree						
Control Type: Actuated-C	Coordina	ted										
Maximum v/c Ratio: 1.38						105	_					
Intersection Signal Delay	/: 57.2	87.6%		li I	ntersection CILL even	on LOS:	t rice F					
Analysis Period (min) 15	nzau011 č				SO Leve	OF GEIV	ICC E					
 Volume exceeds cap 	acity, qu	eue is th	neoretica	ally infini	te.							
Queue shown is maxi	imum aft	er two cy	ycles.									
# 95th percentile volum	ne excee	ds capa	city, que	ue may	be longe	r.						
Queue shown is maxi	mum aft	er two cy	ycles.									

Splits and Phases: 99: Harrison Avenue & Massachusetts Avenue

► e1	↑ ₀₂	→ ₀₄
11 s 🛛	53 s	36 s
▲ 05	↓ ∞6	★ ø8
11 s	53 s	36 s

	•	-	7	¥	-		٩	Ť	1	>		÷
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	S	BT
Lane Configurations	1900	1900	1900	2100	↑ 2100	2100	1900	1900	1900	1900	↑ 1900	
Lane Width (ft)	1900	1900	1900	11	11	11	1900	1900	1900	1900	11	190
Storage Length (ft)	0		100	0		0	0		0	150		0
Storage Lanes	30	3.0	30	30	3.0	30	3.0	3.0	30	30	3.0	3.0
Leading Detector (ft)	50	50	50	50	50	0.0	0.0	50	50	50	50	0.0
Trailing Detector (ft)	0	0	0	0	0	^	45	0	0	0	0	<u>,</u>
Lane Util, Factor	0.95	0.95	1.00	1.00	0.95	0,95	1.00	0,95	1,00	1.00	0,95	0,95
Ped Bike Factor	0.00	0.98	0.79	0.87	0.97	5.50		5.50		0.84	0.99	5.00
Frt			0.850	0.071	0.959				0.850	0.675	0.994	
Fit Protected Satd_Flow (prot)	0	0.987	1500	0.950	3170	0	0	3471	1495	0.950	3280	0
Flt Permitted	0	0.674	1399	0.950	3179	0	0	J#/ I	1490	0.950	5209	0
Satd. Flow (perm)	0	2206	1267	1526	3179	0	0	3471	1495	1280	3289	0
Right Turn on Red			No			No			No		4	Yes
Headway Factor	1.00	1.00	1.00	1.04	1.14	1.04	1.09	1.00	1.00	1.09	4	1.09
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		412			351			161			677	
Volume (vob)	67	9.4	1/1	310	8.0 506	180	0	3.7	275	61	15.4 01.9	37
Confl. Peds. (#/hr)	152	190	141	102	506	152	138	738	191	191	918	138
Confl. Bikes (#/hr)	.02			.01					2			1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	13%	7%	1%	10%	6%	6%	0%	4%	8%	11%	4%	19%
Adj. Flow (vph)	73	207	153	347	550	205	0	802	299	66	998	40
Lane Group Flow (vph)	0	280	153	347	755	0	0	802	299	66	1038	0
Turn Type	Perm		Perm	Prot					pt+ov	Prot		
Protected Phases		3		2	23			1	12	4	14	
Permitted Phases	3	3	3	2	23			1	12	4	14	
Minimum Initial (s)	8.0	8.0	8.0	8.0	23			8.0	12	8.0	14	
Minimum Split (s)	38.0	38.0	38.0	14.0				30.0		14.0		
Total Split (s)	38.0	38.0	38.0	30.0	68.0	0.0	0.0	37.0	67.0	15.0	52.0	0.0
Total Split (%)	31.7%	31.7%	31.7%	25.0%	56.7%	0.0%	0.0%	30.8%	55.8%	12.5%	43.3%	0.0%
Yellow Time (s)	32.0	32.0	32.0	24.0				31.0		9.0		
All-Red Time (s)	3.0	3.0	3.0	3.0				3.0		3.0		
Lead/Lag	Lag	Lag	Lag	Lead				5.0		5.0		
Lead-Lag Optimize?				0.0						0.0		
venicle Extension (s)	2.0 None	2.0 Nono	2.0 None	2.0				2.0 C-Mox		2.0 None		
Walk Time (s)	8.0	None 8.0	0.8	NONE				0-wax		NUNE		
Flash Dont Walk (s)	24.0	24.0	24.0					16.0				
Pedestrian Calls (#/hr)	86	86	86					85				
Act Effct Green (s)		30.9	30.9	26.6	60.5			38.5	68.1	12.0	53.5	
Actuated g/C Ratio		0.26	0.26	0.22	0.50			0.32	0.57	0.10	0.45	
Control Delav		43.5	44.5	73.3	10.47			42.0	16.8	60.4	31.6	
Queue Delay		0.0	0.0	22.5	0.6			0.0	0.0	0.0	0.5	
Total Delay		43.5	44.5	95.8	10.7			42.0	16.8	60.4	32.1	
LOS		D	D	F	B			D	В	E	C	
Approach Delay		43.8			37.5			35.2			33.8	
90th %ile Green (s)	32.0	32.0	32.0	24.0	U			31.0		9.0	U	
90th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
70th %ile Green (s)	32.0	32.0	32.0	24.0				31.0		9.0		
70th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
50th %ile Term Code	32.0 Ped	32.0 Ped	32.0 Pad	24.0 May				31.0 Coord		9.0 Max		
30th %ile Green (s)	32.0	32.0	32.0	24.0				31.0		9.0		
30th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
10th %ile Green (s)	11.5	11.5	11.5	22.2				53.3		9.0		
10th %ile Term Code	Gap	Gap	Gap	Gap	070			Coord	1.40	Max	705	
Fuel Used(gal)		204	112	267	2/6			043	149	57	15	
CO Emissions (g/hr)		296	164	497	339			755	147	97	1077	
NOx Emissions (g/hr)		58	32	97	66			147	29	19	210	
VOC Emissions (g/hr)		69	38	115	79			175	34	22	250	
Dilemma Vehicles (#)		0	0	0	0			205	0	0	250	
Queue Length 50th (It)		91 m125	95 m143	236 #420	95			305	196	49	359	
Internal Link Dist (ft)		332		<i>π</i> ч ∠3	271			81	130	31	597	
Turn Bay Length (ft)			100							150		
Base Capacity (vph)		643	370	394	1706			1112	853	152	1467	
Starvation Cap Reducta		0	0	53	550			0	0	0	129	
Storage Cap Reductn		0	0	0	0			0	0	0	120	
Reduced v/c Ratio		0.44	0.41	1.02	0.65			0.72	0.36	0.43	0.78	
Intersection Summary												
Area Type:	Other											
Cycle Length: 120												
Actuated Cycle Length:	120			_	_							
Offset: 57 (48%), Refere	nced to p	ohase 1:	:NBSB,	Start of 0	Green							
Natural Cycle: 100	Coordina	ted										
Maximum v/c Ratio: 0.80)	ieu										
Intersection Signal Delay	/: 36.5			I	ntersecti	on LOS:	D					
Intersection Capacity Uti	lization 8	86.5%		- 1	CU Leve	l of Serv	ice E					
Analysis Period (min) 15		do	oite		ho la							
 95th percentile volun Oueue shown is maximum 	ine excee	er two c	weles	eue may	be longe	и.						
m Volume for 95th per	centile o	ueue is r	metered	by upst	ream sig	nal.						
	q	2 30 10 1		-, apoli								
Splits and Phases: 10	0: Alban	y Street	& Mass	achusett	s Ave							
↓↑ _{a1}	*7	x "2		¥	► @3			4	<i>a</i> 4			
• • • • • •	1	w4.		*	ل س				~7			

	٦	-	\rightarrow	∢	←	•	•	Ť	1	1	Ŧ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4				
Sign Control		Yield			Yield			Stop			Stop	
Volume (vph)	35	237	29	179	358	46	56	166	53	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	38	258	32	195	389	50	61	180	58	0	0	0
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total (vph)	327	634	299									
Volume Left (vph)	38	195	61									
Volume Right (vph)	32	50	58									
Hadj (s)	-0.02	0.06	-0.06									
Departure Headway (s)	5.9	5.6	6.4									
Degree Utilization, x	0.54	0.98	0.53									
Capacity (veh/h)	594	638	553									
Control Delay (s)	15.7	53.3	16.4									
Approach Delay (s)	15.7	53.3	16.4									
Approach LOS	С	F	С									
Intersection Summary												
Delay			34.8									
HCM Level of Service			D									
Intersection Capacity Utili	ization		88.0%	IC	CU Leve	l of Serv	ice		E			
Analysis Period (min)			15									

	¥	×	Ť	۲	6	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۲	1	f)			र्स
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	55	60	234	7	10	209
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	60	65	254	8	11	227
Pedestrians	43		13			27
Lane Width (ft)	12.0		12.0			12.0
Walking Speed (ft/s)	4.0		4.0			4.0
Percent Blockage	4		1			2
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)			383			
pX, platoon unblocked						
vC. conflicting volume	563	328			305	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	563	328			305	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	87	90			99	
cM capacity (veh/h)	464	677			1222	
Direction Lone #	\//P 1	M/P 2	NID 1	CD 1		
Volume Total	VVD I	0002	1001	220		
Volume Lotal	00	60	262	238		
Volume Len	60	0	0	11		
	0	60	4700	1000		
	404	0//	1700	1222		
volume to Capacity	0.13	0.10	0.15	0.01		
Queue Length 95th (II)	11	8	0	1		
Control Delay (s)	13.9	10.9	0.0	0.4		
Lane LOS	B	В		A		
Approach Delay (s)	12.3		0.0	0.4		
Approach LOS	В					
Intersection Summary						
Average Delay			2.6			
Intersection Capacity Util	lization		37.2%	10	CU Level	of Service
Analysis Period (min)			15			

	٦	-	\mathbf{i}	∢	←	•	1	Ť	1	1	Ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2
Lane Configurations	1900	41» 1900	1900	1900	41» 1900	1900	1900	4 1900	1900	1900	↔	1900	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50		50	50		50	50	50	50	50		
Turning Speed (mph)	15	U	9	15	U	9	15	U	9	15	U	9	
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	
Fit Protected		0.986			0.963			0.994	0.850		0.942		
Satd. Flow (prot)	0	2977	0	0	2942	0	0	1680	1275	0	1529	0	
Fit Permitted Satd_Flow (perm)	0	0.650	0	0	0.791	0	0	0.958	1275	0	0.864	0	
Right Turn on Red	0	1900	Yes	0	2000	Yes	U	1020	Yes	U	1044	Yes	
Satd. Flow (RTOR)		11			38				32		32		
Headway Factor	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	
Link Distance (ft)		318			402			243			395		
Travel Time (s)	220	7.2	67	27	9.1	01	10	5.5	20	54	9.0	67	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Heavy Vehicles (%)	2%	7%	13%	0%	8%	2%	9%	0%	14%	4%	0%	5%	
Adj. Flow (vph)	250	479	73	29	271	99	13	89	32	59	37	73	
Turn Type	D.P+P	002	0	Perm	288	U	Perm	102	Perm	Perm	109	U	
Protected Phases	6	16			1			5			5		2
Permitted Phases	1	16		1	1		5	5	5	5	5		
Minimum Initial (s)	4.0	10		8.0	8.0		с 8.0	5 8.0	c 8.0	5 8.0	с 8.0		4.0
Minimum Split (s)	8.0			12.0	12.0		14.0	14.0	14.0	14.0	14.0		24.0
Total Split (s)	18.0	58.0	0.0	40.0	40.0	0.0	38.0	38.0	38.0	38.0	38.0	0.0	24.0
i otal Split (%) Maximum Green (s)	15.0%	48.3%	0.0%	33.3%	33.3% 36.0	0.0%	31.7% 32.0	31.7%	31.7%	31.7% 32.0	31.7% 32.0	0.0%	20%
Yellow Time (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
All-Red Time (s)	1.0			1.0	1.0		3.0	3.0	3.0	3.0	3.0		1.0
Lead/Lag	Lag			Lead	Lead		Lead	Lead	Lead	Lead	Lead		Lag
Vehicle Extension (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	None			C-Max	C-Max		None	None	None	None	None		None
VValk Time (s)													7.0
Pedestrian Calls (#/hr)													5
Act Effct Green (s)		84.1			70.1			19.1	19.1		19.1		
Actuated g/C Ratio		0.70			0.58			0.16	0.16		0.16		
Control Delay		10.8			21.0			48.1	13.9		53.2		
Queue Delay		0.0			0.0			0.0	0.0		0.0		
Total Delay		10.8			21.0			48.1	13.9		53.2		
Approach Delav		в 10.8			21.0			40.0	В		53.2		
Approach LOS		B			C			D			D		
90th %ile Green (s)	14.0			42.7	42.7		25.3	25.3	25.3	25.3	25.3		20.0
70th %ile Green (s)	Max 14.0			Coord 71 7	71 7		Gap 20.3	Gap 20.3	Gap 20.3	Gap 20.3	Gap 20.3		Ped
70th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
50th %ile Green (s)	14.0			75.1	75.1		16.9	16.9	16.9	16.9	16.9		0.0
South %ile Term Code	Max 14.0			Coord 78.3	Coord 78.3		Gap 13.7	Gap 13.7	Gap 13.7	Gap 13.7	Gap 13.7		Skip
30th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
10th %ile Green (s)	14.0			82.8	82.8		9.2	9.2	9.2	9.2	9.2		0.0
10th %ile Term Code	Max	270		Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
Fuel Used(gal)		2/9			257			2	8		3		
CO Emissions (g/hr)		349			289			108	13		196		
NOx Emissions (g/hr)		68			56			21	2		38		
Dilemma Vehicles (#)		81			67			25	3		45		
Queue Length 50th (ft)		82			110			72	0		102		
Queue Length 95th (ft)		268			183			117	27		166		
Internal Link Dist (ft)		238			322			163			315		
Base Capacity (vph)		1499			1381			459	384		404		
Starvation Cap Reductn		0			0			0	0		0		
Spillback Cap Reductn		0			0			0	0		0		
Reduced v/c Ratio		0.54			0.29			0.22	0.08		0.42		
Intersection Summarv													
Area Type:	CBD												
Cycle Length: 120	100												
Actuated Cycle Length:	120	haco 1.		Start of (Green								
Natural Cycle: 80	enced to p	mase 1:1	DVVB,	Start of (Sieen								
Control Type: Actuated-	Coordinat	ted											
Maximum v/c Ratio: 0.70	0				atorac -/'		C						
Intersection Signal Dela	y. 20.9 ilization 6	1.6%		lr Ic	CU Leve	on LOS: I of Serv	ice B						
Analysis Period (min) 15	5			I.		2. 0017							
Splits and Phases	Albany	troot 0 h	lother	nton Ct-	oot								
Splits and Phases: 3:	Albany S		Iortnam	Ipton Str	eet								
al 👬	1	₹ ₿ @2		¥₹ a	15			4 ₀6					
4U S	2	24 S		38 s				18 s					

	≯	->	\rightarrow	∢	←	•	1	Ť	1	1	Ŧ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Turning Speed (mph)	15	U	9	15	U	9	15	U	9	15	U	9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.987			0.973		0.90	0.969			0.980	
Fit Protected	<u>^</u>	0.994	^	~	0.989	~	0.950	0050	<u>^</u>	0.950	04.40	^
Sato. Flow (prot)	0	0.904	0	U	0.656	0	0.180	2953	0	0.108	3143	0
Satd. Flow (perm)	0	1557	0	0	1078	0	322	2953	0	199	3143	0
Right Turn on Red		6	Yes		13	Yes		45	Yes		23	Yes
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	
Travel Time (s)		266			5.1			15.4			49.0	
Volume (vph)	50	343	43	71	172	62	52	914	234	134	814	122
Confl. Peds. (#/hr)	75		202	202		75	119		139	139		119
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	11%	4%	5%	7%	13%	2%	2%	10%	4%	3%	8%	4%
Lane Group Flow (vph)	54	3/3	47	0	187 331	67	57	993 1247	254	146	1018	133
Turn Type	Perm		U	Perm	001	Ū	pm+pt		v	pm+pt		Ū
Protected Phases	٨	4		0	8		5	2		1	6	
Detector Phases	4	4		8 8	8		2	2		0	6	
Minimum Initial (s)	8.0	8.0		8.0	8.0		6.0	8.0		6.0	8.0	
Minimum Split (s)	22.0	22.0	0.0	22.0	22.0	0.0	10.0	22.0	0.0	10.0	22.0	0.0
Total Split (%)	35.0%	35.0%	0.0%	35.0%	35.0%	0.0%	12.0%	53.0%	0.0%	12.0%	53.0%	0.0%
Maximum Green (s)	31.0	31.0		31.0	31.0		8.0	49.0		8.0	49.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag	1.0	1.0		1.0	1.0		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
venicle Extension (s) Recall Mode	3.0 None	3.0 None		3.0 None	3.0 None		3.0 None	3.0 C-Max		3.0 May	3.0 C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		NUTIE	7.0		wax	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Act Effct Green (s)	0	31.0		0	0 31 0		55.8	49 0		58.6	0 52.2	
Actuated g/C Ratio		0.31			0.31		0.56	0.49		0.59	0.52	
v/c Ratio		0.97			0.97		0.20	0.85		0.61	0.62	
Queue Delay		0.0			/5.1 0.0		9.8	28.3		0.0	0.0	
Total Delay		69.9			75.1		9.8	28.3		22.7	19.2	
LOS		E			75 4		A	C		С	10 C	
Approach Delay Approach LOS		69.9 E			75.1 E			27.5 C			19.6 B	
90th %ile Green (s)	31.0	31.0		31.0	31.0		8.0	49.0		8.0	49.0	
90th %ile Term Code	Max	Max		Max	Max		Max	Coord		MaxR	Coord	
70th %ile Term Code	Max	Max		Max	Max		Gap	49.0 Coord		8.0 MaxR	49.7 Coord	
50th %ile Green (s)	31.0	31.0		31.0	31.0		6.7	49.0		8.0	50.3	
50th %ile Term Code	Max	Max		Max	Max		Gap	Coord		MaxR	Coord	
30th %ile Term Code	Max	Max		Max	Max		Gap	49.0 Coord		MaxR	Coord	
10th %ile Green (s)	31.0	31.0		31.0	31.0		0.0	49.0		8.0	61.0	
10th %ile Term Code	Max	Max 371		Hold	Hold		Skip	Coord		MaxR	Coord	
Fuel Used(gal)		9			249		0	18		3	23	
CO Emissions (g/hr)		640			459		35	1246		224	1600	
NUX Emissions (g/hr)		125			89		7	242		44 52	311	
Dilemma Vehicles (#)		0			0		0	209		0	0	
Queue Length 50th (ft)		294			200		13	341		37	234	
Queue Length 95th (ft)		#503			#382		29	443		#88	312	
Turn Bay Length (ft)		100			.44			001			2014	
Base Capacity (vph)		487			343		299	1470		241	1650	
Starvation Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	Ő		0	Ő	
Reduced v/c Ratio		0.97			0.97		0.19	0.85		0.61	0.62	
Intersection Summary												
Area Type: 0	Other											
Actuated Cycle Length: 1	100											
Offset: 32 (32%), Refere	nced to p	hase 2:1	NBTL a	nd 6:SBT	ΓL, Start	of Greer	n					
Natural Cycle: 80	Coordin-4	tod										
Maximum v/c Ratio: 0.97	coordinal	leu										
Intersection Signal Delay	y: 35.7			Ir	ntersecti	on LOS:	D					
Intersection Capacity Uti Analysis Period (min) 15	ilization 8	2.2%		10	CU Leve	of Serv	ice E					
 # 95th percentile volun 	ne excee	ds capac	city, que	ue may	be longe	r.						
Queue shown is maxi	imum afte	er two cy	cles.									
Splits and Phases oo	: Harrisor	n Avenue	e & Mas	sachuse	etts Aven	ue						
					2							

F Ø]	1 02	- 04
12 s	53 s	35 s
1 ø5	● ø6	₽ 8
12 s	53 s	35 s

	٠	-	7	¥	-	•	٩	Ť	1	>	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Ideal Flow (vphpl)	1900	4 ↑ 1900	1900	1900	↑ 1900	1900	1900	1900	1900	1 900	↑ 1900	1900
Lane Width (ft)	12	12	12	11	11	11	10	12	12	10	11	10
Storage Length (ft)	0		100	0		0	0		0	150		0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Leading Detector (ft)	50	50	50	50	50			50	50	50	50	
Turning Speed (mph)	15	0	9	15	U	9	15	0	9	15	0	9
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor		0.98	0.74	0.88	0.96				0.850	0.91	0.98	
Flt Protected		0.992	0.850	0.950	0.952				0.650	0.950	0.989	
Satd. Flow (prot)	0	3261	1429	1517	2814	0	0	3374	1524	1574	3138	0
Fit Permitted	0	0.808	1000	0.950	204.4	•	~	2074	1504	0.950	2400	-
Said. Flow (perm) Right Turn on Red	0	2605	1062 No	1338	2814	No	0	3374	1524 No	1435	3138	0 Yes
Satd. Flow (RTOR)						. 10					10	
Headway Factor	1.00	1.00	1.00	1.04	1.14	1.04	1.09	1.00	1.00	1.09	1.04	1.09
Link Speed (mpn)		402			30			161			30 677	
Travel Time (s)		9.1			8.0			3.7			15.4	
Volume (vph)	78	391	74	158	231	108	0	1013	591	164	710	55
Confl. Peas. (#/hr)	169		128	128		169	140		163	163		140
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	19%	8%	13%	15%	5%	8%	0%	7%	6%	7%	7%	24%
Parking (#/hr) Adi Flow (vpb)	95	425	80	172	251	6 117	0	1101	642	179	770	60
Lane Group Flow (vph)	00	510	80	172	368	0	0	1101	642	178	832	0
Turn Type	Perm		Perm	Prot					pt+ov	Prot		
Protected Phases	~	3	~	2	23			1	12	4	14	
Detector Phases	3	3	3	2	23			1	12	4	14	
Minimum Initial (s)	8.0	8.0	8.0	8.0	20			8.0	12	8.0		
Minimum Split (s)	38.0	38.0	38.0	14.0				30.0	00.5	14.0	05.5	
Total Split (s)	38.0	38.0	38.0	17.0	55.0 45.8%	0.0	0.0	49.0	66.0 55.0%	16.0	65.0 54 2%	0.0
Maximum Green (s)	32.0	32.0	32.0	11.0	+0.0%	0.0%	0.0%	43.0	33.0%	10.0	J4.270	0.0%
Yellow Time (s)	3.0	3.0	3.0	3.0				3.0		3.0		
All-Red Time (s)	3.0	3.0	3.0	3.0				3.0		3.0		
Lead-Lag Optimize?	Lead	Lead	Lead	Lag				Lead		Lag		
Vehicle Extension (s)	2.0	2.0	2.0	2.0				2.0		2.0		
Recall Mode	None	None	None	None				C-Max		None		
Flash Dont Walk (s)	8.0 24.0	8.0 24 0	8.0 24 0					8.0 16.0				
Pedestrian Calls (#/hr)	76	76	76					74				
Act Effct Green (s)		32.3	32.3	14.0	49.3			48.7	65.7	13.0	64.7	
Actuated g/C Ratio		0.27	0.27	0.12	0.41			0.41	0.55	0.11	0.54	
Control Delay		43.3	36.2	114.0	24.3			37.9	30.1	132.1	19.0	
Queue Delay		0.7	0.0	0.0	0.0			0.0	1.4	57.2	0.0	
Total Delay		44.0	36.2	114.0	24.3			37.9	31.4	189.3	19.0	
LUS Approach Delay		42 Q	D	F	52.8			35.5	C	F	49 N	
Approach LOS		72.9 D			02.0 D			D			-70.0 D	
90th %ile Green (s)	32.0	32.0	32.0	11.0				43.0		10.0		
90th %ile Term Code	Max	Max 32.0	Max	Max 11.0				Coord		Max 10.0		
70th %ile Term Code	Max	Max	Max	Max				43.0 Coord		Max		
50th %ile Green (s)	32.0	32.0	32.0	11.0				43.0		10.0		
50th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
30th %ile Term Code	Ped	S∠.0 Ped	SZ.0 Ped	Max				43.0 Coord		Max		
10th %ile Green (s)	18.7	18.7	18.7	11.0				56.3		10.0		
10th %ile Term Code	Gap	Gap	Gap	Max				Coord	100	Max	10-	
Stops (vph)		346	50	134	218			871	462	135	462	
CO Emissions (g/hr)		525	74	338	266			972	483	421	668	
NOx Emissions (g/hr)		102	14	66	52			189	94	82	130	
VOC Emissions (g/hr)		122	17	78	62			225	112	98	155	
Queue Length 50th (ft)		146	42	135	95			406	393	~150	212	
Queue Length 95th (ft)		206	m82	#278	133			500	571	#295	268	
Internal Link Dist (ft)		322			271			81			597	
Turn Bay Length (ft)		760	100	177	1210			1369	824	150	1605	
Starvation Cap Reductn		20	0	0	0			0	0.54	0	0	
Spillback Cap Reductn		67	0	0	0			0	68	22	0	
Storage Cap Reductn		074	0	0	0			0	0	0	0	
Reduced v/c Ratio		0.74	0.26	0.97	0.30			0.80	0.84	1.19	0.49	
Intersection Summary	Other											
Area Type: (Cycle Length: 120	Uther											
Actuated Cycle Length: 1	120											
Offset: 92 (77%), Referen	nced to p	hase 1:	:NBSB,	Start of 0	Green							
Natural Cycle: 100	Coordina	ted										
Maximum v/c Ratio: 1.04	Jouraina	ieu										
Intersection Signal Delay	: 42.6			I	ntersecti	on LOS:	D					
Intersection Capacity Util	lization 9	0.2%		I	CU Leve	l of Serv	ice E					
Analysis Period (min) 15	acity ou	ALLA is th	heoretic	ally infini	te							
Queue shown is maxi	imum aft	er two c	ycles.									
# 95th percentile volum	ne excee	ds capa	city, qu	eue may	be longe	er.						
Queue shown is maxi	imum aft	er two cy	ycles.	by uper	eam sig	nal						
a volume for 95th percent	sennie di	Leve is r	metelec	by upsti	earti Siĝi	iai.						

Splits and Phases: 100: Albany Street & Massachusetts Avenue
	٦	-	\mathbf{r}	4	-	•	•	Ť	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$				
Sign Control		Yield			Yield			Stop			Stop	
Volume (vph)	42	364	53	111	201	48	65	158	77	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	46	396	58	121	218	52	71	172	84	0	0	0
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total (vph)	499	391	326									
Volume Left (vph)	46	121	71									
Volume Right (vph)	58	52	84									
Hadj (s)	0.02	0.07	-0.05									
Departure Headway (s)	5.7	5.9	6.3									
Degree Utilization, x	0.79	0.64	0.57									
Capacity (veh/h)	615	577	536									
Control Delay (s)	26.7	18.9	17.1									
Approach Delay (s)	26.7	18.9	17.1									
Approach LOS	D	С	С									
Intersection Summary												
Delay			21.7									
HCM Level of Service			С									
Intersection Capacity Utili	zation		78.0%	10	CU Leve	l of Serv	ice		D			
Analysis Period (min)			15									

	¥	×	Ť	۴	6	ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۲	1	¢Î			۰
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	36	28	289	80	60	125
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	39	30	314	87	65	136
Pedestrians	29		11			14
Lane Width (ft)	12.0		12.0			12.0
Walking Speed (ft/s)	4.0		4.0			4.0
Percent Blockage	2		1			1
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)			395			
pX, platoon unblocked	0.98	0.98			0.98	
vC conflicting volume	664	401			430	
vC1, stage 1 conf vol	004				.00	
vC2_stage 2 conf vol						
vCu, unblocked vol	658	391			421	
tC, single (s)	6.4	6.2			4.1	
tC 2 stage (s)	0.4	0.2				
tF (s)	3.5	3.3			22	
p0 queue free %	90	95			94	
cM capacity (veh/h)	387	628			1103	
sin supuony (vonin)	007	020			1100	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1		
Volume Total	39	30	401	201		
Volume Left	39	0	0	65		
Volume Right	0	30	87	0		
cSH	387	628	1700	1103		
Volume to Capacity	0.10	0.05	0.24	0.06		
Queue Length 95th (ft)	8	4	0	5		
Control Delay (s)	15.4	11.0	0.0	3.1		
Lane LOS	С	В		А		
Approach Delay (s)	13.5		0.0	3.1		
Approach LOS	В					
Intersection Summary				_		
Average Delay			2.3			
Intersection Canacity Liti	lization		50.9%	10		of Servic
Analysis Period (min)	action		15	N N		OF OFFICE
Analysis Feriou (IIIII)			10			

	٦		\mathbf{r}	4	←	•	•	Ť	1	1	ŧ	~	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2
Lane Configurations	1000	41	1000	1000	41	1000	1000	4	1000	1000	4	1000	
Ideal Flow (vphpl) Total Lost Time (s)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Leading Detector (ft)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0		
Turning Speed (mph)	15	0.05	9	15	0.05	9	15	1.00	9	15	1.00	9	
Frt	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	0.850	1.00	0.916	1.00	
Flt Protected		0.981			0.999			0.980			0.985		
Satd. Flow (prot)	0	2960	0	0	3114	0	0	1676	1454	0	1523	0	
Fit Permitted	0	0.553	0	0	0.948	0	0	0.810	1/5/	0	0.869	0	
Right Turn on Red	0	1009	Yes	U	2900	Yes	0	1365	Yes	0	1343	Yes	
Satd. Flow (RTOR)		6	100		9	100			113		81	100	
Headway Factor	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	
Link Speed (mph)		30			30			30			30		
Travel Time (s)		7.7			9.4			4.5			8.7		
Volume (vph)	153	207	25	8	554	63	38	53	104	87	18	173	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Heavy Vehicles (%)	1%	9%	21%	0%	3%	0%	0%	0%	0%	1%	6%	1%	
Lane Group Flow (vph)	166	418	27	9	679	0	41	8C 90	113	95	20	188	
Turn Type	D.P+P	410	J	Perm	513	U	Perm	33	Perm	Perm	505	U	
Protected Phases	6	16			1			5			5		2
Permitted Phases	1			1			5	_	5	5	_		
Detector Phases	6	16		1	1		5	5	5	5	5		4.0
Minimum Split (s)	4.0			8.0	8.0 12.0		12.0	12.0	12.0	12.0	12.0		4.0 24.0
Total Split (s)	12.0	45.0	0.0	33.0	33.0	0.0	51.0	51.0	51.0	51.0	51.0	0.0	24.0
Total Split (%)	10.0%	37.5%	0.0%	27.5%	27.5%	0.0%	42.5%	42.5%	42.5%	42.5%	42.5%	0.0%	20%
Maximum Green (s)	8.0			29.0	29.0		45.0	45.0	45.0	45.0	45.0		20.0
Yellow Lime (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
Lead/Lag	Lac			Lead	Lead		Lead	Lead	Lead	Lead	Lead		Lag
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes
Vehicle Extension (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	Max			C-Max	C-Max		None	None	None	None	None		None
VValk Time (s)													7.0
Pedestrian Calls (#/hr)													5
Act Effct Green (s)		76.2			68.2			27.0	27.0		27.0		5
Actuated g/C Ratio		0.64			0.57			0.22	0.22		0.22		
v/c Ratio		0.36			0.40			0.32	0.27		0.83		
Control Delay		12.8			27.3			38.9	7.2		50.1		
Total Delay		12.8			27.6			38.9	7.2		50.1		
LOS		B			C			D	A		D		
Approach Delay		12.8			27.6			22.0			50.1		
Approach LOS		В		00 7	C		07.0	C	07.0	07.0	D		00.0
90th %ile Green (s)	8.0 MayP			36.7 Coord	36.7 Coord		37.3 Gan	37.3 Gan	37.3 Gan	37.3 Gan	37.3 Gan		20.0 Ped
70th %ile Green (s)	8.0			67.9	67.9		30.1	30.1	30.1	30.1	30.1		0.0
70th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
50th %ile Green (s)	8.0			73.6	73.6		24.4	24.4	24.4	24.4	24.4		0.0
50th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap 10.9	Gap	Gap		Skip
30th %ile Term Code	8.0 MaxR			Coord	Coord		Gan	Gap	Gan	Gan	Gan		Skip
10th %ile Green (s)	8.0			84.5	84.5		13.5	13.5	13.5	13.5	13.5		0.0
10th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
Stops (vph)		157			360			72	15		197		
Fuel Used(gal)		201			522			1 89	28		333		
NOx Emissions (g/hr)		39			102			00	∠o 5		65		
VOC Emissions (g/hr)		47			121			20	6		77		
Dilemma Vehicles (#)		0			0			0	0		0		
Queue Length 50th (ft)		49			152			65	0		170		
Queue Length 95th (ft)		156			351			101	41		245		
Turn Bay Length (ft)		257			33Z			120			303		
Base Capacity (vph)		1148			1683			542	638		575		
Starvation Cap Reductn		0			449			0	0		0		
Spillback Cap Reductn		0			0			0	0		0		
Storage Cap Reductn		0 26			0 55			0 19	0 19		0.52		
Reduced V/C Ratio		0.30			0.55			0.18	0.18		0.53		
Intersection Summary	ODD												
Area Type:	CBD												
Actuated Cycle Length:	120												
Offset: 72 (60%). Refere	enced to n	hase 1:	EBWB,	Start of (Green								
Natural Cycle: 80			,										
Control Type: Actuated-	Coordinat	ed											
Maximum v/c Ratio: 0.83	3				atorcast	on 1 0 0	C						
Intersection Signal Dela	y. ∠7.2 ilization 6	6.6%		1	CULEVE	I of Serv	ice C						
Analysis Period (min) 15	5	0.070		, in the second s		. 51 5617							
Splits and Phases: 10): Albany \$	Street &	Northa	mpton St	reet								
\$ al	🤼		-	a5				2	k _a β				
33 s	24 s		51	s				12	8				

	٦	-	\rightarrow	1	-		•	Ť	1	*	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1900	1900	1900	1900	1900	1900	1900	↑ 1900	1900	1900	↑ 1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
Turning Speed (mph)	15	U	9	15	U	9	15	U	9	15	U	9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.95			0.976			0.93		0.95	0.95	
Flt Protected	<i>.</i>	0.992	~	<i>^</i>	0.989	^	0.950	0445	-	0.950	0000	^
Satd. Flow (prot)	0	1651	0	0	1692	0	1703	3115	0	1736	3206	0
Satd. Flow (perm)	0	1312	0	0	1252	0	274	3115	0	329	3206	0
Right Turn on Red		4.4	Yes		40	Yes		25	Yes		20	Yes
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	28	1.00
Link Speed (mph)		30			30			30			30	
Link Distance (ft) Travel Time (s)		267			224			677 154			2154	
Volume (vph)	46	194	49	113	318	94	94	753	158	72	858	153
Confl. Peds. (#/hr)	81		191	191		81	103		142	142		103
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	4	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	3%	6%	7%	4%	6%	6%	6%	5%	4%	4%	5%	5%
Adj. Flow (vph)	50	211	53	123	346 571	102	102	818	172	78	933	166
Turn Type	Perm	314	0	Perm	571	0	pm+pt	990	0	pm+pt	1099	U
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4	4		8	8		2	2		6	6	
Minimum Initial (s)	8.0	8.0		8.0	8.0		6.0	8.0		6.0	8.0	
Minimum Split (s)	22.0	22.0		22.0	22.0		10.0	22.0		10.0	22.0	0.0
Total Split (s)	36.0%	36.0%	0.0%	36.0%	36.0%	0.0%	11.0%	53.0%	0.0%	11.0%	53.0%	0.0%
Maximum Green (s)	32.0	32.0	0.070	32.0	32.0	0.070	7.0	49.0	0.078	7.0	49.0	0.070
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Lime (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None 70	None 7.0		None 70	None 7 0		None	C-Max		Max	C-Max	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0			0		50.0	0	
Act Effect Green (s)		0.32			0.32		0.56	49.0		56.8 0.57	51.2 0.51	
v/c Ratio		0.74			1.40		0.41	0.64		0.27	0.66	
Control Delay		41.0			221.8		13.7	20.6		11.0	20.6	
Total Delay		41.0			221.8		13.7	20.6		0.0	20.6	
LOS		D			F		B	C		B	C	
Approach Delay		41.0			221.8			20.0			20.0	
Approach LOS 90th %ile Green (s)	32.0	32 0		32.0	52 O		7.0	49 0		7.0	49 0	
90th %ile Term Code	Max	Max		Max	Max		Max	Coord		MaxR	Coord	
70th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
70th %ile Ferm Code	Max 32.0	Max 32.0		Max 32.0	Max 32.0		Max 7.0	Coord		MaxR 7.0	Coord	
50th %ile Term Code	Hold	Hold		Max	Max		Max	Coord		MaxR	Coord	
30th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
30th %ile Term Code	Hold	Hold		Max 32.0	Max 32.0		Max	Coord		MaxR 7.0	Coord	
10th %ile Term Code	Hold	Hold		Max	Max		Skip	Coord		MaxR	Coord	
Stops (vph)		243			394		40	631		30	714	
Fuel Used(gal)		305			27		1	12 847		2	25	
NOx Emissions (g/hr)		59			364		13	165		21	342	
VOC Emissions (g/hr)		71			434		16	196		25	408	
Dilemma Vehicles (#)		171			0		0	220		0	267	
Queue Length 95th (ft)		#297			~400 #699		48	229		38	343	
Internal Link Dist (ft)		187			144		.5	597		50	2074	
Turn Bay Length (ft)		107			400		252	1544		206	1655	
Starvation Cap Reductn		427			409		253	0		200	0000	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0 74			0		0 40	0 64		0 27	0	
Reduced V/C Ratio		0.74			1.40		0.40	0.64		0.27	0.66	
Intersection Summary	Other											
Cycle Length: 100	Uner											
Actuated Cycle Length: "	100											
Offset: 78 (78%), Refere	nced to p	hase 2:	NBTL a	nd 6:SB	TL, Start	of Gree	n					
Control Type: Actuated-0	Coordinat	ted										
Maximum v/c Ratio: 1.40)											
Intersection Signal Delay	/: 58.6	8.6%		li li	ntersection	on LOS:	E					
Analysis Period (min) 15	nzauUII 0	0.070		1	CO Leve	JI GelV	NOC E					
 Volume exceeds cap 	acity, qu	eue is th	neoretica	ally infini	te.							
Queue shown is maxi	mum afte	er two cy	city curr		he longs	r						
Queue shown is maxi	imum afte	er two cy	ycles.	ao may	Je longe	••						

Splits and Phases: 99: Harrison Avenue & Massachusetts Avenue

► e1	↑ ⁰ ² ⁰ ²	A 04
11 s 🛛	53 s	36 s
▲ @5	↓ ∞6	★ ø8
11 s 🛛	53 s	36 s

	۶	-	\rightarrow	*	-	•	1	Ť	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Ideal Flow (vphpl)	1900	4 1 1900	1900	<mark>។</mark> 2100	↑ŀ 2100	2100	1900	†† 1900	آ 1900	<mark>ា</mark> 1900	† ₽ 1900	1900
Lane Width (ft)	12	12	12	11	11	11	10	12	12	10	11	10
Storage Length (ft)	0		100	0		0	0		0	150		0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Leading Detector (ft)	50	50	50	50	50			50	50	50	50	
Turning Speed (mph)	15	0	9	15	0	9	15	0	9	15	0	9
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor		0.98	0.79	0.87	0.97				0.850	0.84	0.99	
Flt Protected		0.987	0.000	0.950	0.959				0.000	0.950	0.994	
Satd. Flow (prot)	0	3282	1599	1753	3179	0	0	3471	1495	1518	3289	0
Fit Permitted	0	0.674	1007	0.950	0470	~	0	2474	1405	0.950	2200	0
Sato. Flow (perm) Right Turn on Red	0	2206	1267 No	1526	3179	0 No	0	3471	1495 No	1281	3289	0 Yes
Satd. Flow (RTOR)						. 10					4	
Headway Factor	1.00	1.00	1.00	1.04	1.14	1.04	1.09	1.00	1.00	1.09	1.04	1.09
Link Speed (mph)		30 412			30			30 161			30 677	
Travel Time (s)		9.4			8.0			3.7			15.4	
Volume (vph)	67	190	153	319	506	189	0	742	275	61	918	37
Confl. Peas. (#/hr)	152		102	102		152	138		191	191		138
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	13%	7%	1%	10%	6%	6%	0%	4%	8%	11%	4%	19%
Parking (#/hr) Adi Flow (vpb)	72	207	166	347	6 550	205	0	807	200	66	908	40
Lane Group Flow (vph)	0	280	166	347	755	0	0	807	299	66	1038	
Turn Type	Perm		Perm	Prot					pt+ov	Prot		
Protected Phases	2	3	2	2	23			1	12	4	14	
Detector Phases	3	3	3	2	23			1	12	4	14	
Minimum Initial (s)	8.0	8.0	8.0	8.0				8.0		8.0		
Minimum Split (s)	38.0	38.0	38.0	14.0	69.0	0.0	0.0	30.0	67.0	14.0	52.0	0.0
Total Split (%)	38.0	31.7%	31.7%	25.0%	56.7%	0.0%	0.0%	30.8%	55.8%	12.5%	52.0 43.3%	0.0%
Maximum Green (s)	32.0	32.0	32.0	24.0		2.370	2.375	31.0		9.0		2.575
Yellow Time (s)	3.0	3.0	3.0	3.0				3.0		3.0		
All-Red Time (s)	3.0 Lag	3.0 Lag	3.0 Lag	3.0 Lead				3.0		3.0		
Lead-Lag Optimize?	Lug	Lag	Lag	2000								
Vehicle Extension (s)	2.0	2.0	2.0	2.0				2.0		2.0		
Walk Time (s)	NONE	None 8.0	NONE 8.0	None				C-Max		INONE		
Flash Dont Walk (s)	24.0	24.0	24.0					16.0				
Pedestrian Calls (#/hr)	86	86	86	00.5	00 5			85	CO 1	40.0	50 F	
Act Effect Green (s)		30.9	30.9	26.6	0.5			38.5	0.57	12.0	53.5 0.45	
v/c Ratio		0.20	0.20	0.22	0.30			0.73	0.37	0.43	0.45	
Control Delay		43.4	45.7	73.3	10.1			42.2	16.8	60.4	31.6	
Queue Delay		0.0	0.0	22.5	0.6			0.0	0.0	0.0	0.6	
LOS		43.4 D	45.7 D	95.8 F	10.7 B			42.2 D	10.8 B	60.4 E	32.2 C	
Approach Delay		44.2	5		37.5			35.3	5	-	33.9	
Approach LOS		D			D			D			С	
90th %ile Green (s) 90th %ile Term Code	32.0 Pod	32.0 Pod	32.0 Ped	24.0				31.0 Coord		9.0 Max		
70th %ile Green (s)	32.0	32.0	32.0	24.0				31.0		9.0		
70th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
50th %ile Green (s)	32.0	32.0	32.0	24.0				31.0		9.0		
30th %ile Green (s)	22.0	22.0	22.0	Max 24.0				Coord 31.0		Max 9.0		
30th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
10th %ile Green (s)	11.5	11.5	11.5	22.2				53.3		9.0		
Stops (vph)	Gap	Gap 204	Gap 124	Gap 267	276			648	149	Max 57	765	
Fuel Used(gal)		4	3	7	5			11	2	1	15	
CO Emissions (g/hr)		296	182	497	339			761	147	97	1077	
NUX Emissions (g/hr)		58	35	97	66			148	29	19	210	
Dilemma Vehicles (#)		09	42	0	0			0	0	0	230	
Queue Length 50th (ft)		91	103	236	95			307	130	49	359	
Queue Length 95th (ft)		m125	m154	#429	103			386	196	97	444	
Turn Bay Length (ft)		332	100		2/1			81		150	597	
Base Capacity (vph)		643	370	394	1706			1112	853	152	1467	
Starvation Cap Reductn		0	0	53	550			0	0	0	0	
Storage Cap Reducto		0	0	0	0			0	32	0	153	
Reduced v/c Ratio		0.44	0.45	1.02	0.65			0.73	0.36	0.43	0.79	
Intersection Summary												
Area Type: (Other											
Cycle Length: 120	120											
Offset: 57 (48%) Refere	nced to r	bhase 1	NBSB 9	Start of (Green							
Natural Cycle: 100					510011							
Control Type: Actuated-C	Coordina	ted										
Maximum v/c Ratio: 0.89	1:366				nterecoti	on LOS.	D					
Intersection Capacity Uti	lization 8	6.6%			CU Leve	l of Serv	ice E					
Analysis Period (min) 15												
# 95th percentile volum	ne excee	ds capa	city, que	eue may	be longe	er.						
m Volume for 95th per	centile at	Leue is r	netered	by upstr	eam sig	nal.						
, in the point				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Splits and Phases: 10	0: Alban	/ Street	& Massa	achusett	s Ave							
	7	\$ _{ø2}		÷	► ø3			-4	ø4			
17 .	20			20				15.				

	٦	-	\mathbf{r}	4	+	•	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$				
Sign Control		Yield			Yield			Stop			Stop	
Volume (vph)	35	237	47	187	358	46	68	166	56	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	38	258	51	203	389	50	74	180	61	0	0	0
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total (vph)	347	642	315									
Volume Left (vph)	38	203	74									
Volume Right (vph)	51	50	61									
Hadj (s)	-0.05	0.06	-0.06									
Departure Headway (s)	5.9	5.7	6.4									
Degree Utilization, x	0.57	1.01	0.56									
Capacity (veh/h)	591	627	541									
Control Delay (s)	16.6	62.9	17.3									
Approach Delay (s)	16.6	62.9	17.3									
Approach LOS	С	F	С									
Intersection Summary												
Delay			39.5									
HCM Level of Service			E									
Intersection Capacity Utili	zation		90.9%	10	CU Leve	l of Serv	ice		E			
Analysis Period (min)			15									

	4	×.	Ť	1	6	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۲	1	ĥ			र्स
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	67	74	234	21	35	209
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	73	80	254	23	38	227
Pedestrians	43		13			27
Lane Width (ft)	12.0		12.0			12.0
Walking Speed (ft/s)	4.0		4.0			4.0
Percent Blockage	4		1			2
Right turn flare (veh)						-
Median type	None					
Median storage veh)						
Unstream signal (ft)			383			
nX platoon unblocked			000			
vC conflicting volume	625	336			320	
vC1_stage 1 conf vol	020	000			520	
vC2 stage 2 conf vol						
vCu, upblocked vol	625	336			320	
tC single (s)	6.4	6.2			1 1	
C_{2} stage (s)	0.4	0.2			-4.1	
tE (c)	35	3.5			22	
n (s)	0.0	0.0			2.2	
oM consoity (yoh/h)	03	670			1206	
civi capacity (Ven/n)	417	070			1200	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1		
Volume Total	73	80	277	265		
Volume Left	73	0	0	38		
Volume Right	0	80	23	0		
cSH	417	670	1700	1206		
Volume to Capacity	0.17	0.12	0.16	0.03		
Queue Length 95th (ft)	16	10	0	2		
Control Delay (s)	15.4	11.1	0.0	14		
Lane LOS	C	В	0.0	A		
Approach Delay (s)	13.2	5	0.0	1.4		
Approach LOS	. 0.2 R		0.0	1.4		
	D					
Intersection Summary						
Average Delay			3.4			
Intersection Capacity Uti	lization		49.4%	IC	CU Level	of Servic
Analysis Period (min)			15			

	•	-+	\rightarrow	1	-	•	1	Ť	1	1	ŧ	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ø2
Lane Configurations	1000	41	1000	1000	412	1000	1000	4	1000	1000	4	1000	
Total Lost Time (s)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Leading Detector (ft)	50	50	4.0	50	50	1.0	50	50	50	50	50	1.0	
Trailing Detector (ft)	0	0	~	0	0	~	0	0	0	0	0	~	
Lane Util, Factor	15 0.95	0,95	0.95	0.95	0.95	0,95	15	1.00	9 1.00	15	1.00	1.00	
Frt	0.00	0.986	0.00	0.00	0.969	0.00	1.00	1.00	0.850	1.00	0.942	1.00	
Flt Protected		0.985			0.996			0.994	10		0.983		
Satd. Flow (prot)	0	2977	0	0	2954	0	0	1680	1275	0	1529	0	
Satd. Flow (perm)	0	2001	0	0	2334	0	0	0.958	1275	0	1344	0	
Right Turn on Red	0	2001	Yes	0	2004	Yes	0	.520	Yes	v		Yes	
Satd. Flow (RTOR)		11			27				32		32		
Headway Factor	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	
Link Opeed (mpn)		30			402			243			395		
Travel Time (s)		7.2			9.1			5.5			9.0		
Volume (vph)	230	441	67	27	249	71	12	82	29	54	34	67	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	250	479	73	29	271	77	13	89	32	59	37	73	
Lane Group Flow (vph)	0	802	0	0	377	0	0	102	32	0	169	0	
Turn Type	D.P+P			Perm			Perm	_	Perm	Perm	_		
Protected Phases	6	16		4	1		5	5	5	5	5		2
Detector Phases	6	16		1	1		5 5	5	5 5	5 5	5		
Minimum Initial (s)	4.0			8.0	8.0		8.0	8.0	8.0	8.0	8.0		4.0
Minimum Split (s)	8.0			12.0	12.0		14.0	14.0	14.0	14.0	14.0		24.0
Total Split (s)	18.0	58.0	0.0	40.0	40.0	0.0	38.0	38.0	38.0	38.0	38.0	0.0	24.0
Maximum Green (s)	14.0	40.3%	0.0%	36.0	36.0	0.0%	31.7%	31.7%	31.7%	31.7%	31.7%	0.0%	20%
Yellow Time (s)	3.0			3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
All-Red Time (s)	1.0			1.0	1.0		3.0	3.0	3.0	3.0	3.0		1.0
Lead/Lag	Lag			Lead	Lead		Lead	Lead	Lead	Lead	Lead		Lag
Vehicle Extension (s)	1 es 3.0			1 es 3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	None			C-Max	C-Max		None	None	None	None	None		None
Walk Time (s)													7.0
Flash Dont Walk (s)													13.0
Act Effet Green (s)		84 1			70.1			191	19.1		19.1		5
Actuated g/C Ratio		0.70			0.58			0.16	0.16		0.16		
v/c Ratio		0.53			0.27			0.40	0.14		0.70		
Control Delay		10.7			21.5			48.1	13.9		53.2		
Queue Delay Total Delay		0.0			0.0 21.5			0.0 48 1	0.0		0.0		
LOS		B			21.5 C			-+0.1 D	13.9 B		55.2 D		
Approach Delay		10.7			21.5			40.0	5		53.2		
Approach LOS		В			С			D			D		
90th %ile Green (s)	14.0			42.7	42.7		25.3	25.3	25.3	25.3	25.3		20.0
70th %ile Green (s)	14 0			71 7	71 7		Gap 20.3	20 3	Gap 20.3	Cap 20.3	Gap 20.3		Ped
70th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
50th %ile Green (s)	14.0			75.1	75.1		16.9	16.9	16.9	16.9	16.9		0.0
50th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
30th %ile Green (s)	14.0			78.3	78.3		13.7	13.7	13.7	13.7	13.7		0.0
10th %ile Green (s)	14 0			82 8	82 8		Gap 9.2	9 2	9 2	Gap 9.2	Gap 9.2		5KIP
10th %ile Term Code	Max			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
Stops (vph)		279			249		- orp.	81	8		116		p
Fuel Used(gal)		5			4			2	0		3		
CO Emissions (g/hr)		348			278			108	13		196		
VOC Emissions (g/hr)		81			54 65			25	2		45		
Dilemma Vehicles (#)		0			0			0	0		-0		
Queue Length 50th (ft)		82			107			72	0		102		
Queue Length 95th (ft)		268			177			117	27		166		
Internal Link Dist (ft)		238			322			163			315		
Base Capacity (voh)		1520			1375			459	384		404		
Starvation Cap Reductn		0			0			0	0		0		
Spillback Cap Reductn		0			0			0	0		0		
Storage Cap Reductn		0			0			0	0		0		
Reduced V/C Ratio		0.53			0.27			0.22	0.08		0.42		
Intersection Summary	OPP												
Area Type: Cycle Length: 120	CBD												
Actuated Cycle Length: 1	120												
Offset: 76 (63%), Refere	nced to p	hase 1:	EBWB,	Start of (Green								
Natural Cycle: 80													
Control Type: Actuated-O	Coordinat	ted											
Intersection Signal Delay	y. 20 9				ntersecti	on LOS:	C						
Intersection Capacity 1 Iti	ilization 6	0.9%		10	CU Leve	of Serv	rice B						
Analysis Period (min) 15		2.070											
Splits and Phases: 3:	Albany S	treet & N	lortham	pton Str	eet								
4 		11		l-la€				1.2					

the e1 the e2 the e5 the e6 the e6

	≯	-	\rightarrow	1	-	•	1	Ť	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1900	1900	1000	1000	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50		50	50	
I railing Detector (ft)	15	0	0	0	0	0	15	0	0	0	0	٥
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor		0.96			0.97		0.96	0.92			0.95	
Frt Elt Protoctod		0.987			0.972		0.050	0.969		0.050	0.980	
Satd, Flow (prot)	0	0.994	0	0	0.989	0	0.950	2953	0	0.950	3140	0
Flt Permitted	0	0.892	0	J	0.673	U	0.179	2000	J	0.108	0140	U
Satd. Flow (perm)	0	1535	0	0	1104	0	320	2953	0	199	3140	0
Right Turn on Red		0	Yes		10	Yes		40	Yes		24	Yes
Sato. Flow (KTOR) Headway Factor	1.00	6 1.00	1.00	1.00	13	1.00	1.00	45	1.00	1.00	24	1.00
Link Speed (mph)	1.00	30	1.00	1.00	30	1.00	1.00	30	1.00	1.00	30	1.00
Link Distance (ft)		266			224			677			2154	
I ravel Time (s)	E 4	6.0	40	67	5.1	60	FF	15.4	0.24	104	49.0	105
Confl, Peds. (#/hr)	54 75	343	43 202	202	172	<u>02</u> 75	55 119	914	139	134	014	125
Confl. Bikes (#/hr)	, 5		5	202		2	115		7	100		4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	11%	4%	5%	7%	13%	2%	2%	10%	4%	3%	8%	4%
Lane Group Flow (vph)	59	479	4/	73	327	0	60	993 1247	254	146	1021	130
Turn Type	Perm	413	0	Perm	521	U	pm+pt	1241	0	pm+pt	1021	0
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8	0		2	0		6	0	
Minimum Initial (s)	4	8.0		8 9.8	80		5	8.0		1	6 8.0	
Minimum Split (s)	22.0	22.0		22.0	22.0		10.0	22.0		10.0	22.0	
Total Split (s)	35.0	35.0	0.0	35.0	35.0	0.0	12.0	53.0	0.0	12.0	53.0	0.0
Total Split (%)	35.0%	35.0%	0.0%	35.0%	35.0%	0.0%	12.0%	53.0%	0.0%	12.0%	53.0%	0.0%
Maximum Green (s)	31.0	31.0		31.0	31.0		8.0	49.0		8.0	49.0	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0 C Mov		3.0	3.0 C Mov	
Walk Time (s)	7.0	1NONE 7.0		7.0	1NONE 7.0		NONE	C-IVIAX 7.0		iviax	C-IVIAX 7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0			0			0	
Act Effct Green (s)		31.0			31.0		55.9	49.0		58.5	52.1	
v/c Ratio		0.31			0.31		0.56	0.49		0.58	0.52	
Control Delay		76.2			67.5		9.9	28.3		22.7	19.3	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		76.2			67.5		9.9	28.3		22.7	19.3	
LUS		E 76.0			E		A	C 27.5		С	10 Z	
Approach Delay		76.2 F			67.5 F			27.5			19.7 R	
90th %ile Green (s)	31.0	31.0		31.0	31.0		8.0	49.0		8.0	49.0	
90th %ile Term Code	Max	Max		Max	Max		Max	Coord		MaxR	Coord	
70th %ile Green (s)	31.0	31.0		31.0	31.0		7.4	49.0		8.0	49.6	
70th %ile Term Code	Max	Max		Max	Max		Gap	Coord		MaxR	Coord	
50th %ile Term Code	31.0 Max	31.0 Max		31.0 May	31.0 Max		6.8 Gan	49.0 Coord		8.0 MaxR	SU.2	
30th %ile Green (s)	31.0	31.0		31.0	31.0		6.3	49.0		8.0	50.7	
30th %ile Term Code	Max	Max		Max	Max		Gap	Coord		MaxR	Coord	
10th %ile Green (s)	31.0	31.0		31.0	31.0		0.0	49.0		8.0	61.0	
10th %ile Lerm Code	Max	Max 373		Hold	Hold		Skip	Coord		MaxR 61	Coord	
Fuel Used(gal)		10			6		1	18		3	23	
CO Emissions (g/hr)		686			421		37	1246		224	1605	
NOx Emissions (g/hr)		133			82		7	242		44	312	
VOC Emissions (g/hr)		159			98		9	289		52	372	
Queue Length 50th (ft)		301			194		14	341		37	235	
Queue Length 95th (ft)		#516			#369		30	443		#88	313	
Internal Link Dist (ft)		186			144		50	597		50	2074	
Turn Bay Length (ft)					e							
Base Capacity (vph)		480			351		298	1470		241	1648	
Spillback Can Reducth		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		1.00			0.93		0.20	0.85		0.61	0.62	
Intersection Summary												
Area Type:	Other											
Cycle Length: 100												
Actuated Cycle Length: 1	100	hace 0	NPT	nd 6-007	CI 04	of Cr-	n					
Onset: 32 (32%), Refere Natural Cycle: 75	nced to p	mase 2:1	INBIL 8	na 6:581	i∟, Start	or Gree	n					
Control Type: Actuated-0	Coordinat	ed										
Maximum v/c Ratio: 1.00)											
Intersection Signal Delay	: 35.8	0.401		Ir	ntersecti	on LOS:	D					
Intersection Capacity Uti	lization 8	0.4%		10	U Leve	of Serv	lice D					
# 95th perceptile volum	ne excee	ds canar	acity au	eue may	be longe	er.						
Queue shown is maxi	imum afte	er two cv	ycles.	ac may	20 longe							
		,	•									
Splits and Phases: 99	: Harrisor	n Avenue	ue & Ma	ssachuse	tts Aven	ue						

≻ ₀1	≪† ø2	- ↓ ₀₄
12 s	53 s	35 s
\$ _05	↓ ≥6	★ _{ø8}
12 s	53 s	35 s

Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 100: Albany Street & Massachusetts Avenue

	٠	-	\rightarrow	4	+	•	٩	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$				
Sign Control		Yield			Yield			Stop			Stop	
Volume (vph)	42	364	66	117	201	48	64	158	77	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	46	396	72	127	218	52	70	172	84	0	0	0
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total (vph)	513	398	325									
Volume Left (vph)	46	127	70									
Volume Right (vph)	72	52	84									
Hadj (s)	0.00	0.08	-0.05									
Departure Headway (s)	5.7	5.9	6.3									
Degree Utilization, x	0.81	0.66	0.57									
Capacity (veh/h)	615	575	531									
Control Delay (s)	28.7	19.6	17.3									
Approach Delay (s)	28.7	19.6	17.3									
Approach LOS	D	С	С									
Intersection Summary												
Delay			22.8									
HCM Level of Service			С									
Intersection Capacity Uti	ization		80.8%	IC	CU Leve	l of Serv	ice		D			
Analysis Period (min)			15									

WBL Stop	WBR	NBT	NBR	ODI	
Stop	1			SBL	SBT
Stop		1.			۴,
		Free			Free
0%		0%			0%
35	28	289	90	78	125
0.92	0.92	0.92	0.92	0.92	0.92
1) 38	30	314	98	85	136
29		11			14
12.0		12.0			12.0
4.0		4.0			4.0
2		1			1
-					
None					
None					
		395			
ad 0.98	0.98	000		0.98	
0.90	406			441	
	400			441	
4					
701	301			427	
64	62			427	
0.4	0.2				
2.5	22			2.2	
0.0	0.5			2.2	
255	80			1000	
	023			1000	
WB 1	WB 2	NB 1	SB 1		
38	30	412	221		
38	0	0	85		
C	30	98	0		
355	623	1700	1088		
0.11	0.05	0.24	0.08		
(ft) S	4	0	6		
16.4	11.1	0,0	3.7		
C	В	2.0	A		
	2	0.0	3.7		
14.0		0.0			
14.0 E					
14.0 E					
14.0 E					
14.0 E ry		2.5			
14.0 E ry y Utilization		2.5 52.8%	IC	CU Leve	l of Servic
	0.92 (0.92 (0.92 (0.93 (0.	0.92 0.92)) 38 30 29 12.0 4.0 2) None 9 2 2 12.0 4.0 2 3 12.0 4.0 2 3 12.0 12.0 4.0 2 3 12.0	0.92 0.92 0.92 0.92 0.93 30 314 29 111 12.0 12.0 4.0 4.0 2 1 None 395 364 0.98 0 701 395 355 355 623 WB1 WB2 NB1 38 0 0 0 30 98 355 623 1700 0.11 0.05 0.24 14 34 0	0.92 0.93 0.98 0.98 0.98 0.98 0.98 0.93 0.98 0.93 0.98 0.98 0.93 0.98 0.98 0.98 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.98 0.93 0.92 0.92 0.92 0.92 0.92 0.92 <td< td=""><td>0.92 0.92 0.92 0.92 0.92 0.92 0.93 30 314 98 85 29 11 12.0 12.0 4.0 4.0 2 1 2 1 1 1 10 395 395 1 10 391 441 1 10 701 391 427 6.4 6.2 4.1 3.5 3.3 2.2 89 95 92 355 623 1088 WB1 WB2 NB1 SB1 38 0 0 85 0 30 98 0 335 623 1088 (11 0.05 1.24 108 0 30 98 0 355 623 1088 1018 (11 0.05 1.24 10.88 0 1.10</td></td<>	0.92 0.92 0.92 0.92 0.92 0.92 0.93 30 314 98 85 29 11 12.0 12.0 4.0 4.0 2 1 2 1 1 1 10 395 395 1 10 391 441 1 10 701 391 427 6.4 6.2 4.1 3.5 3.3 2.2 89 95 92 355 623 1088 WB1 WB2 NB1 SB1 38 0 0 85 0 30 98 0 335 623 1088 (11 0.05 1.24 108 0 30 98 0 355 623 1088 1018 (11 0.05 1.24 10.88 0 1.10

	۶	-+	\rightarrow	•	-	•	1	Ť	1	`	*	≻ ↓	≻ ↓ ≁
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL		SBT	SBT SBR
Lane Configurations	1000	417	1000	1000	417	1000	1000	4	1	1000		4	4
Total Lost Time (s)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	ך ר	$\frac{1900}{140}$
Leading Detector (ft)	50	50		50	50		50	50	50	50	50		
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0		0
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00		1.00
Frt		0.990			0.985				0.850		0.916		
Fit Protected	0	0.981	0	0	0.999	0	0	0.980	1454	0	0.985	0	
Flt Permitted	0	0.553	0	0	0.948	0	0	0.810	1404	0	0.869	0	
Satd. Flow (perm)	0	1669	0	0	2955	0	0	1385	1454	0	1343	0	
Right Turn on Red		0	Yes		0	Yes			Yes		04	Yes	
Satd. Flow (RTOR) Headway Eactor	1 14	1 14	1 14	1 14	1 14	1 14	1 14	1 14	113	1 14	81	1 14	
Link Speed (mph)	1.14	30	1.14	1.14	30	1.14	1.14	30	1.14	1.14	30	1.14	
Link Distance (ft)		337			412			200			383		
Travel Time (s)	450	7.7	05	0	9.4	60	20	4.5	104	07	8.7	170	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	
Heavy Vehicles (%)	1%	9%	21%	0%	3%	0%	0%	0%	0%	1%	6%	1%	
Adj. Flow (vph)	166	225	27	9	602	68	41	58	113	95	20	188	
Lane Group Flow (vph)	0	418	0	0	679	0	0	99	113	0	303	0	
Turn Type Protected Phones	D.P+P	10		Perm	4		Perm	E	Perm	Perm	E		2
Permitted Phases	6	16		1	1		5	5	5	5	5		2
Detector Phases	6	16		1	1		5	5	5	5	5		
Minimum Initial (s)	4.0			8.0	8.0		6.0	6.0	6.0	6.0	6.0		4.0
Minimum Split (s)	8.0			12.0	12.0		12.0	12.0	12.0	12.0	12.0		24.0
Total Split (s)	12.0	45.0	0.0	33.0	33.0	0.0	51.0	51.0	51.0	51.0	51.0	0.0	24.0
Total Split (%) Maximum Green (c)	10.0%	31.5%	0.0%	21.5%	21.5%	0.0%	42.5%	42.5%	42.5%	42.5%	42.5%	0.0%	20%
Yellow Time (s)	3.0			29.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0
All-Red Time (s)	1.0			1.0	1.0		3.0	3.0	3.0	3.0	3.0		1.0
Lead/Lag	Lag			Lead	Lead		Lead	Lead	Lead	Lead	Lead		Lag
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes	Yes	Yes	Yes		Yes
venicle Extension (s)	3.0 Max			3.0 C-Max	3.0 C-Max		3.0 None	3.0 None	3.0 None	3.0 None	3.0		3.0 None
Walk Time (s)	wax			0-iviax	0-iviax		NONE	NONE	NOTIE	NUTIE	NUTIE		7.0
Flash Dont Walk (s)													13.0
Pedestrian Calls (#/hr)													5
Act Effct Green (s)		76.2			68.2			27.0	27.0		27.0		
Actuated g/C Ratio		0.64			0.57			0.22	0.22		0.22		
Control Delav		12.8			27.3			38.9	7.2		50.1		
Queue Delay		0.0			0.3			0.0	0.0		0.0		
Total Delay		12.8			27.6			38.9	7.2		50.1		
LOS		B			C			D	A		D		
Approach Delay		12.8			27.6			22.0			50.1		
90th %ile Green (s)	80	В		36.7	36.7		37 3	37.3	37.3	37 3	37 3		20.0
90th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Ped
70th %ile Green (s)	8.0			67.9	67.9		30.1	30.1	30.1	30.1	30.1		0.0
70th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
50th %ile Green (s)	8.0			73.6	73.6		24.4	24.4	24.4	24.4	24.4		0.0
30th %ile Green (s)	NIAXR 8 0			78 2	78 2		19 8	19 8	19 8	19 8	6ap		SKIP 0.0
30th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
10th %ile Green (s)	8.0			84.5	84.5		13.5	13.5	13.5	13.5	13.5		0.0
10th %ile Term Code	MaxR			Coord	Coord		Gap	Gap	Gap	Gap	Gap		Skip
Stops (vph)		157			360			72	15		197		
CO Emissions (a/br)		201			522			1 88	28		222		
NOx Emissions (g/hr)		39			102			17	5		65		
VOC Emissions (g/hr)		47			121			20	6		77		
Dilemma Vehicles (#)		0			0			0	0		0		
Queue Length 50th (ft)		49			152			65	0		170		
Undergrad Link Dist (ft)		156 257			351			101	41		245		
Turn Bay Length (ft)		201			552			120			000		
Base Capacity (vph)		1148			1683			542	638		575		
Starvation Cap Reductn	l.	0			449			0	0		0		
Spillback Cap Reductn		0			0			0	0		0		
Reduced v/c Ratio		0.36			0.55			0 18	0 18		0.53		
Interception Summer		0.00			0.00			0.10	0.10		0.00		
Area Type:	CBD												
Area Type: Cycle Length: 120	CRD												
Actuated Cycle Length:	120												
Offset: 72 (60%), Refere	enced to p	hase 1:	EBWB,	Start of (Green								
Natural Cycle: 80	0 "												
Control Type: Actuated-													
Intersection Signal Dela	v: 27.2			b	ntersectio	on LOS.	С						
Intersection Capacity Ut	ilization 6	6.6%		10	CU Leve	l of Serv	ice C						
Analysis Period (min) 15	5												
Splits and Phases: 10): Albany	Street &	Northa	mpton St	reet								
al 🕈	🏄 ₀₂	2	- ⊉	₽ø5				2	► ø6				
33 s	24 s		51	s				12	8				

	٠	-	\rightarrow	1	-	 	1	Ť	1	•	ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1900	1900	1900	1900	↔ 1900	1900	1900	↑1 →	1900	1900	↑ 1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft) Trailing Detector (ft)	50 0	50 0		50 0	50 0		50 0	50 0		50 0	50 0	
Turning Speed (mph)	15	Ŭ	9	15	Ű	9	15		9	15	Ŭ	9
Lane Util. Factor Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.978			0.976			0.974		0.00	0.977	
Fit Protected	0	0.991	0	0	0.990	0	0.950	2115	0	0.950	3206	0
Flt Permitted	U	0.765	0	U	0.758	0	0.153	3115	0	0.190	3206	U
Satd. Flow (perm)	0	1276	0	0	1263	0	274	3115	0	329	3206	0
Satd, Flow (RTOR)		11	Yes		12	Yes		35	Yes		28	Yes
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			2154	
Travel Time (s)		6.1			5.1			15.4			49.0	
Volume (vph)	51	194	49	110	318	94	94	753	158	72	858	153
Confl. Peds. (#/hr) Confl. Bikes (#/hr)	81		191	191		81	103		142	142		103
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	3%	6%	7%	4%	6%	6%	6%	5%	4%	4%	5%	5%
Lane Group Flow (vph)	55	211 319	53	120	346 568	102	102	818 990	1/2	78 78	933	166
Turn Type	Perm	010	0	Perm	000	U	pm+pt	000	Ŭ	pm+pt		U
Protected Phases	Α	4		0	8		5	2		1	6	
Detector Phases	4	4		8 8	8		2	2		ь 1	6	
Minimum Initial (s)	8.0	8.0		8.0	8.0		6.0	8.0		6.0	8.0	
Minimum Split (s)	22.0	22.0	0.0	22.0	22.0	0.0	10.0	22.0	0.0	10.0	22.0	0.0
Total Split (S)	36.0%	36.0%	0.0%	36.0%	36.0%	0.0%	11.0%	53.0%	0.0%	11.0%	53.0%	0.0%
Maximum Green (s)	32.0	32.0	2.073	32.0	32.0	2.575	7.0	49.0	2.075	7.0	49.0	2.075
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lead/Lag	1.0	1.0		1.0	1.0		1.0 Lead	1.0		1.0 Lead	1.0	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Walk Time (s)	None 7.0	None 7.0		None 7.0	None 7.0		None	C-Max 7.0		мах	C-Max 7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0		55.0	0		50.0	0	
Actuated d/C Ratio		32.0			32.0		55.8 0.56	49.0		0.57	51.2 0.51	
v/c Ratio		0.77			1.38		0.41	0.64		0.27	0.66	
Control Delay		43.6			214.4		13.7	20.6		11.0	20.6	
Queue Delay		43.6			0.0 214 4		0.0	20.6		0.0	20.6	
LOS		D			E 14.4		B	20.0 C		B	20.0 C	
Approach Delay		43.6			214.4			20.0			20.0	
Approach LOS 90th %ile Green (s)	32.0	32 0		32.0	32.0		70	49.0		70	49 0	
90th %ile Term Code	Max	Max		Max	Max		Max	Coord		MaxR	Coord	
70th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
70th %ile Term Code	Max 32.0	Max		Max 32.0	Max 32.0		Max	Coord		MaxR	Coord	
50th %ile Term Code	Hold	Hold		Max	Max		Max	Coord		MaxR	Coord	
30th %ile Green (s)	32.0	32.0		32.0	32.0		7.0	49.0		7.0	49.0	
30th %ile Term Code	Hold	Hold		Max 32.0	Max 32.0		Max	Coord		MaxR	Coord	
10th %ile Term Code	Hold	Hold		Max	Max		Skip	Coord		MaxR	Coord	
Stops (vph)		245			393		40	631		30	714	
Fuel Used(gal)		310			26		1	12 847		107	25	
NOx Emissions (g/hr)		62			352		13	165		21	342	
VOC Emissions (g/hr)		74			420		16	196		25	408	
Dilemma Vehicles (#)		170			0		0	0		0	0	
Queue Length 95th (ft)		#313			#692		48	229		38	343	
Internal Link Dist (ft)		187			144		.5	597		50	2074	
Turn Bay Length (ft)		110			410		252	1544		286	1655	
Starvation Cap Reductn		416			412		253 0	1544		286	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced V/C Ratio		0.77			1.38		0.40	0.64		0.27	0.00	
Intersection Summary	Other											
Cvcle Length: 100	Other											
Actuated Cycle Length:	100											
Offset: 78 (78%), Refere	enced to p	phase 2:	NBTL a	nd 6:SB	TL, Start	of Gree	n					
Control Type: Actuated-(Coordina	ted										
Maximum v/c Ratio: 1.38	8											
Intersection Signal Delay	y: 57.3	6 6%		l	ntersectio	on LOS:	E					
Analysis Period (min) 15	mzation 8 5	0.0%			CO Leve	or Serv	NCE E					
 Volume exceeds car 	pacity, qu	eue is th	eoretica	ally infini	te.							
Queue shown is max	kimum afte	er two cy	cles.		he lore							
gueue shown is max	dimum after	us capa er two c	/cles.	eue may	De longe	a.						

Splits and Phases: 99: Harrison Avenue & Massachusetts Avenue

▶ ₀1		→ ₀₄
11 s 🛛	53 s	36 s
↑ ø5	↓ ∞6	★ ø8
11 s 🛛	53 s	36 s

	٦	-	\rightarrow	1	-	•	1	Ť	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1900	4 1 1900	1900	້ <mark>1</mark> 2100	↑ŀ 2100	2100	1900	†† 1900	آ 1900	<mark>ា</mark> 1900	† ₽ 1900	1900
Lane Width (ft)	12	12	12	11	11	11	10	12	12	10	11	10
Storage Length (ft)	0		100	0		0	0		0	150		0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Leading Detector (ft)	50	50	50	50	50			50	50	50	50	
Turning Speed (mph)	15	0	0	0 15	0	9	15	0	9	0 15	0	9
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	0.95	1.00	1.00	0.95	0.95
Ped Bike Factor		0.98	0.79	0.87	0.97				0.950	0.84	0.99	
Fit Protected		0.987	0.850	0.950	0.959				0.850	0.950	0.994	
Satd. Flow (prot)	0	3282	1599	1753	3179	0	0	3471	1495	1518	3289	0
Fit Permitted		0.674	4007	0.950	0470		~	0474	1405	0.950	2000	~
Said. Flow (perm) Right Turn on Red	0	2206	1267 No	1526	3179	0 No	0	3471	1495 No	1281	3289	Yes
Satd. Flow (RTOR)											4	
Headway Factor	1.00	1.00	1.00	1.04	1.14	1.04	1.09	1.00	1.00	1.09	1.04	1.09
Link Speed (mph)		30 412			30			30 161			30 677	
Travel Time (s)		9.4			8.0			3.7			15.4	
Volume (vph)	67	190	163	319	506	189	0	742	275	61	918	37
Confl. Peds. (#/hr)	152		102	102		152	138		191	191		138
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	13%	7%	1%	10%	6%	6%	0%	4%	8%	11%	4%	19%
Parking (#/hr) Adi Flow (vpb)	73	207	177	347	550	205	0	807	200	66	908	40
Lane Group Flow (vph)	0	280	177	347	755	0	0	807	299	66	1038	
Turn Type	Perm		Perm	Prot					pt+ov	Prot		
Protected Phases	2	3	0	2	23			1	12	4	14	
Detector Phases	3	3	3	2	23			1	12	4	14	
Minimum Initial (s)	8.0	8.0	8.0	8.0				8.0		8.0		
Minimum Split (s)	38.0	38.0	38.0	14.0	69.0	0.0	0.0	30.0	67.0	14.0	52.0	0.0
Total Split (%)	31.7%	31.7%	31.7%	25.0%	56.7%	0.0%	0.0%	30.8%	55.8%	12.5%	43.3%	0.0%
Maximum Green (s)	32.0	32.0	32.0	24.0		2.370	2.375	31.0		9.0		2.575
Yellow Time (s)	3.0	3.0	3.0	3.0				3.0		3.0		
All-Red Lime (s)	3.0 Lag	3.0 Lag	3.0	3.0 Lead				3.0		3.0		
Lead-Lag Optimize?	9	209	209	2000								
Vehicle Extension (s)	2.0	2.0	2.0	2.0				2.0		2.0		
Recall Mode Walk Time (s)	None	None 8.0	None	None				C-Max		None		
Flash Dont Walk (s)	24.0	24.0	24.0					16.0				
Pedestrian Calls (#/hr)	86	86	86	00.5	00 5			85	CO 1	40.0	50 F	
Act Effect Green (s)		30.9	30.9	26.6	0.5			38.5	68.1 0.57	12.0	53.5 0.45	
v/c Ratio		0.20	0.20	0.22	0.30			0.73	0.37	0.43	0.45	
Control Delay		43.3	46.9	73.3	10.1			42.2	16.8	60.4	31.6	
Queue Delay		0.0	0.0	22.5	0.6			0.0	0.0	0.0	0.6	
LOS		43.3 D	46.9 D	95.8 F	10.7 B			42.2 D	10.8 B	60.4 E	32.2 C	
Approach Delay		44.7	5		37.5			35.3	5	-	33.9	
Approach LOS		D			D			D			С	
90th %ile Green (s) 90th %ile Term Code	32.0 Ped	32.0 Ped	32.0 Ped	24.0 May				31.0 Coord		9.0 Max		
70th %ile Green (s)	32.0	32.0	32.0	24.0				31.0		9.0		
70th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
50th %ile Green (s)	32.0	32.0	32.0	24.0				31.0 Coord		9.0		
30th %ile Green (s)	32.0	32.0	32.0	24.0				31.0		9.0		
30th %ile Term Code	Ped	Ped	Ped	Max				Coord		Max		
10th %ile Green (s)	11.5	11.5	11.5	22.2				53.3		9.0		
Stops (vph)	Gap	Gap 204	Gap 133	Gap 267	276			648	149	Max 57	765	
Fuel Used(gal)		4	3	7	5			11	2	1	15	
CO Emissions (g/hr)		296	197	497	339			761	147	97	1077	
NUX Emissions (g/hr)		58	38	97	66			148	29	19	210	
Dilemma Vehicles (#)		09	40	0	0			0	0	0	230	
Queue Length 50th (ft)		92	112	236	95			307	130	49	359	
Queue Length 95th (ft)		m125	m162	#429	103			386	196	97	444	
Turn Bay Length (ft)		332	100		271			81		150	597	
Base Capacity (vph)		643	370	394	1706			1112	853	152	1467	
Starvation Cap Reductn		0	0	53	550			0	0	0	0	
Spillback Cap Reducto		0	0	0	0			0	32	0	153	
Reduced v/c Ratio		0.44	0.48	1.02	0.65			0.73	0.36	0.43	0.79	
Intersection Summary												
Area Type: 0 Cycle Length: 120	Other											
Actuated Cycle Length: 1	120		NROD	Ctort (200							
Virset: 57 (48%), Refere	nced to p	onase 1:	INBSB, S	start of (sreen							
Control Type: Actuated-0	Coordina	ted										
Maximum v/c Ratio: 0.89)						_					
Intersection Signal Delay	/: 36.7	6 60/		1	ntersecti	on LOS:	D					
Analysis Period (min) 15												
# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maxi	imum aft	er two cy	ycles.	burnet								
volume for 95th per	centile q	lede is r	netered	by upst	eam sigi	idi.						
Splits and Phases: 10	0: Alban	Street	& Mass	achusett	s Ave							
1 4 -1	₹	5 "2		¥	►2			4	al			
71 01	20	øΖ		20	ັບວັ			10	2 ¹⁴			

	٦	-	\mathbf{r}	4	+	•	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$				
Sign Control		Yield			Yield			Stop			Stop	
Volume (vph)	35	237	47	187	358	46	78	166	58	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	38	258	51	203	389	50	85	180	63	0	0	0
Direction, Lane #	EB 1	WB 1	NB 1									
Volume Total (vph)	347	642	328									
Volume Left (vph)	38	203	85									
Volume Right (vph)	51	50	63									
Hadj (s)	-0.05	0.06	-0.05									
Departure Headway (s)	6.0	5.7	6.4									
Degree Utilization, x	0.58	1.03	0.59									
Capacity (veh/h)	585	621	541									
Control Delay (s)	16.9	66.3	18.1									
Approach Delay (s)	16.9	66.3	18.1									
Approach LOS	С	F	С									
Intersection Summary												
Delay			41.3									
HCM Level of Service			E									
Intersection Capacity Utili	ization		91.6%	10	CU Leve	l of Serv	ice		F			
Analysis Period (min)			15									

	4	×.	Ť	1	6	Ť
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۲	1	ĥ			ب ا
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Volume (veh/h)	77	87	234	21	35	209
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	84	95	254	23	38	227
Pedestrians	43		13			27
Lane Width (ft)	12.0		12.0			12.0
Walking Speed (ft/s)	4.0		4.0			4.0
Percent Blockage	4		1			2
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)			383			
pX, platoon unblocked						
vC, conflicting volume	625	336			320	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	625	336			320	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	80	86			97	
cM capacity (veh/h)	417	670			1206	
Direction, Lane #	WB 1	WB 2	NB 1	SB 1		
Volume Total	84	95	277	265		
Volume Left	84	0	0	38		
Volume Right	0	95	23	0		
cSH	417	670	1700	1206		
Volume to Canacity	0.20	0.14	0.16	0.03		
Queue Length 95th (ft)	18	12	0.10	2		
Control Delay (s)	15.8	11.3	0.0	14		
Lane LOS	10.0	- 11.5 B	0.0	Δ		
Approach Delay (s)	13.4	0	0.0	14		
Approach LOS	10.4 R		0.0	1.4		
	Б					
Intersection Summary			_	_		
Average Delay			3.8			
Average Delay Intersection Capacity Ut	ilization		3.8 49.6%	10	CU Level	l of Serv

То:	Hank Keating, Eva Erlich – Trinity Financial Jamie Fay – Fort Point Associates	Date: January 19, 2012
From:	Joe SanClemente, P.E., AICP Jared Hite, Jane Howard	HSH Project No.: 2011032
Subject:	35 Northampton Parking Garage	

Executive Summary

Howard Stein Hudson Associates, Inc. (HSH) evaluated the operations at the existing 539-space parking garage located at 35 Northampton Street in the South End neighborhood of Boston and its adequacy to serve additional parking demand associated with the proposed 11 new accessible dwelling units at 35 Northampton Street and the proposed new market rate high-rise including 236 new units. The key objectives of this effort were to:

- Confirm the total number of parking spaces within the garage;
- Evaluate parking usage by time of day;
- Identify the current users of the garage (i.e., transient vs. monthly, origin, etc.); and
- Assess potential impacts of future development on parking supply and demand.

HSH conducted a detailed assessment of parking supply and demand; collected and reviewed vehicle entrance and exit data at the garage driveway; and conducted a survey of garage patrons exiting the garage during May and June of 2011.

A review of entrance and exit gate data provided by the Boston Public Health Commission (BPHC) indicate that monthly card holders account for 80% of all activity within the garage, on average, while transient activity generally accounts for only 20% of garage use, on average, during a typical week. According to data provided by BPHC, there are currently approximately 663 outstanding monthly cards of which a majority are for public parkers such as Boston Medical Center (BMC) employees and/or workers in nearby businesses (252 monthly cards or 38%); BPHC employees (200 monthly cards or 30%); and residents of McCormack Towers (103 monthly cards or 15%). It is notable that parking demand at the McCormack Towers corresponds to only approximately 0.30 monthly cards per residential unit (103 cards/(234+112 units) = 0.30).

Due to the shared use nature of the garage (i.e., residential demand is typically lowest during the weekday midday period and on weekends when office demand is at its peak), the existing 539-space Northampton Garage is currently underutilized throughout the week, with an average occupancy of only approximately 80% during the weekday peak periods (typically between 9:00 AM and 2:00 PM). During the weekday evening and throughout the day on Saturday and Sunday (when office demand is low) the garage is typically less than 30% occupied.

Consequently, the parking demand for the proposed 247 new residential units can be easily accommodated within the existing garage without any impact to current monthly lease agreements or transient activity. It is expected that parking demand associated with the new residential units could yield up to nearly \$146,000 in new annual revenue for the garage assuming current rates for monthly parking at the McCormack Towers.

The following sections of this memorandum detail the existing site conditions; the garage user survey; existing and future parking supply and demand; and a brief summary.

Existing Site Conditions

Garage Layout and Supply

The existing parking garage is located at 35 Northampton Street in the South End neighborhood of Boston and is owned and operated by the Boston Public Health Commission (BPHC). The existing garage abuts several buildings, which it primarily serves, including the McCormack Residential Towers (35 Northampton Street and 860 Harrison Avenue); the Carter Auditorium on Northampton Street; the South End Fitness Center on Northampton Street; the Miranda Creamer Building (BPHC) on Albany Street; and 721-729 Massachusetts Avenue (Boston Medical Center (BMC)).

According to a parking space inventory conducted by HSH on Friday, May 27, 2011, the existing parking garage currently contains 539 parking spaces within a 3-level structure, including 177 spaces on Level 1 (basement level), 173 spaces on Level 2 (ground floor level), and 189 spaces on Level 3.

Vehicular access to the garage is provided at Level 2 on Northampton Street with 1 gate-controlled entrance driveway and 2 gate-controlled exit driveways. Entering patrons receive a ticket at the entrance gate. Then, when leaving the garage, patrons use one of two automated pay stations before returning to their vehicles. The pay stations are located on the fourth floor hallway connecting 35 Northampton and the Miranda Creamer Building and also at the ground level, adjacent to the elevators, of the 35 Northampton Tower entrance. A second vehicular access point located on Albany Street is dedicated for loading and service activity only.

The garage has multiple pedestrian entrances/exits, including one at the main entrance at 35 Northampton Street; one on each level of the garage at 35 Northampton, 860 Harrison, and at the Miranda Creamer Building; and a spiral staircase that provides key-card-only access to the pedestrian bridge connection over to the Boston Medical Center (BMC).

Garage Operations

Vehicular Demand

In order to determine the total number of users of the garage on a typical weekday, HSH collected traffic volume data at the entrance and exit driveways of the garage on Northampton Street, as well as at the loading/service driveway on Albany Street, using an automatic traffic recorder (ATR) for a 24-hour period on Wednesday, June 8, 2011. According to the ATR data, a total of 686 vehicles entered the garage and 659 vehicles exited the garage over the course of the entire day, for an overall space turnover rate of 1.27, reflecting a mixture of long-term and short-term demand. The number of vehicles utilizing the service/loading driveway on Albany Street was negligible throughout the day. **Figure 1** illustrates the total number of vehicles entering and exiting the garage by hour.

Figure 1. Vehicles Entering and Exiting by Hour (Wednesday, June 8, 2011)

As shown in **Figure 1**, the garage experiences peak activity during the commuter peak hours with a majority of vehicles entering the garage between the hours of 6:00 a.m. and 9:00 a.m. and a majority of vehicles leaving between 2:00 p.m. and 6:00 p.m. The garage also experiences moderate activity throughout the day, which is typical for a shared-use facility.

HSH also conducted vehicle occupancy counts on Wednesday, June 8, 2011. The demand of the garage by hour is illustrated in **Figure 2**.

Figure 2. Total Demand by Hour (Wednesday, June 8, 2011)

As shown in **Figure 2**, the garage reached its peak occupancy at 2:00 p.m. with 439 vehicles parked (approximately 81% occupied) – 100 vehicles fewer than the striped capacity of 539 spaces. It should be noted that 90% occupancy is typically considered the effective capacity of large public parking garages, because turnover always occurs and transient parkers need to be able to easily find a space upon entering – this would correspond to an effective capacity of approximately 486 spaces. Overnight parking demand was approximately 140 to 170 vehicles, which is likely attributed to the residential users at the McCormack Towers as well as night shift personnel at BMC.

It is notable that Level 1 of the garage only reached approximately 54% of capacity during the peak mid-day period; while Level 2 and Level 3 reached peak occupancies of approximately 95% on each level during the mid-day peak (see **Figure 3**).

Figure 3. Demand by Level (Wednesday, June 8, 2011)

At approximately 4:00 p.m. HSH staff noted that approximately 30 spaces on Level 3 were closed off for cleaning; however, this temporary closure did not impact demand within the garage as there was sufficient available supply after 4:00 p.m.

Weekday vs. Weekend Activity

Using gate provided by the BPHC for the week of Sunday, June 5 through Saturday, June 11, 2011, HSH evaluated the average weekday, Saturday, and Sunday parking demand for the Northampton Garage (see Figure 4).

Figure 4. Weekday vs. Weekend Demand (June 5 – June 11, 2011)

As shown in **Figure 4**, during the weekdays the Northampton Garage only reached an average peak occupancy of approximately 80% and was underutilized during the evening hours. On Saturday and Sunday, the garage was only approximately 30% occupied throughout the day.

Transient vs. Monthly Activity

The existing garage is currently used by monthly card holders and transient users (i.e., hourly). According to the data provided by the BPHC in June 2011, there are currently approximately 663 outstanding monthly cards for the various users of the garage, as summarized in **Table 1** – this corresponds to roughly 1.2 monthly cards per space within the garage. Due to the shared use nature of the garage (i.e., residential demand is typically lowest during the mid-day period when office demand is at its peak), the garage is able to serve more users than spaces on a typical day (i.e., parking turn-over).

Table 1	Outstanding	Monthly	[,] Card	Holders
---------	-------------	---------	-------------------	---------

Card Holder Type	Number of Cards ²	% of Cards
BPHC Complimentary Parkers	135	20%
BPHC Employees	65	10%
Contractors	2	1%
TB Clinic	4	1%
McCormack Tower Residents ¹	103	15%
Public Parkers	252	38%
Contracted Parkers	102	15%
TOTAL	663	100%

1. 35 Northampton Street and 860 Harrison Avenue.

2. Card holder data provided by BPHC on June 2, 2011.

As shown in **Table 1**, a majority of the outstanding monthly cards are for public parkers (252 or 38%) and BPHC complimentary employees and parkers (200 or 30%). Public parkers consist of a variety of different user types, such as Boston Medical Center employees, area residents, workers in nearby businesses, etc. BPHC complimentary parkers are BPHC staff, who are provided complimentary parking due to the nature of their job duties. The common magnetic card for BPHC employees also serves as their BPHC identification badge.

Located in the Miranda Creamer Building are the headquarters of the Boston Medical Emergency Services (EMS). The EMS staffers are included within the BPHC employee and BPHC complimentary parker categories. The EMS vehicles generally park on Level 1 of the parking garage, adjacent to the EMS entrance.

Residents of McCormack Towers account for only 103 monthly cards (or approximately 15%) – this corresponds to approximately 0.30 monthly cards per residential unit (103 cards/(234+112 units) = 0.30).

Contracted parkers are agencies/groups who lease blocks of spaces from BPHC for employee parking.

Members of the South End Fitness Center are considered transient activity as they are provided with complimentary parking for 2 ¹/₂-hours.

The BPHC provided driveway gate data for the garage during the week of Sunday, June 5 through Saturday, June 11, 2011, which provides a breakdown of monthly card holder versus transit activity. **Figure 5** compares the percentage of monthly card holder versus transient parkers **entering** the garage throughout the week. As shown in **Figure 5**, transient activity accounts for only approximately 20% of garage users, on average, during a typical week.

Figure 5. Transient vs. Monthly Card Activity by Day of Week (June 5 – 11, 2011)

Garage User Survey

Survey Methodology

HSH conducted an 11-hour parking garage user survey of patrons **exiting** the garage on Wednesday, June 8, 2011 from 7:30 a.m. to 6:00 p.m. – these times, and day of week, were selected based on review of garage entrance/exit gate data provided by BPHC for a typical weekday and through discussions with BPHC staff.

During the survey HSH staff was positioned at the exit gates of the garage to interview users as they approached the gate with their vehicles. Garage users were then asked a few brief questions while they either inserted their tickets or tapped their monthly cards at the exit gate. The survey included the following questions in order to differentiate the users of the garage (e.g., monthly pass vs. transient, purpose of trip, etc.):

- 1. Are you a monthly pass user or hourly parker?
- 2. If monthly, who provided you with the pass card (an employer, etc.)?
- 3. What building/address did you come from?
- 4. Approximately how long were you parked for?

In an effort to minimize wait times for patrons exiting the garage, HSH staff surveyed only a sample of users exiting the garage during the busiest time periods.

Survey Results

During the 11-hour survey, HSH received a total of 325 survey responses. According to the ATR data at the exit driveways, 525 vehicles exited the garage during the same time period – which corresponds to a response rate of approximately 62%. A majority of the garage patrons were willing to participate in the short survey, while only a few declined. Approximately 20% (65) of the responses came from transient parkers and 80% (260) from monthly parkers – consistent with the gate data provided by BPHC. The percentage of responses by user type is shown in **Figure 6** – it should be noted that **Figure 6** includes both monthly card and transient users.

Figure 6. Survey Responses by User Type

As shown in **Figure 6**, a majority (31%) of those surveyed were BPHC employees (including BPHC staff (19%) and EMS (12%)), BMC employees (28%), and McCormack Tower residents (14%).

A significant number of survey responses were obtained from patrons associated with the Boston Health Care for the Homeless (7%), located at 780 Albany Street, and the Carter Auditorium (6%); on the day of the survey there was a conference at the auditorium.

Those within the "other" category, approximately 6% of all responses, primarily consisted of visitors to BMC or the McCormack Towers, while a small number of the responses were the result of patrons unwilling to disclose their origin. Only 5% of the responses were associated with the gym (South End Fitness Center); however, it should be noted that a higher response rate from the gym may have been obtained if the survey period were extended past 6 p.m. **Figure 7** illustrates the hourly distribution of garage users exiting the garage by user type.

Figure 7. Hourly Distribution by User Type

Figure 7, shows the complementary nature of the shared garage facility between the various users. For example, peak exiting activity during the morning hours generally consists of McCormack Tower residents leaving for work or gym users likely working out before the start of the work day, while exiting activity associated with the BPHC (primarily an office use) is generally low during the same time period. It is also notable that a large number of responses were obtained from patrons exiting the Cater Auditorium at approximately 2:00 p.m., likely following the end of the conference. Similarly, a majority of the responses after 3 p.m. were associated with BMC employees leaving work.

Summary of Existing Garage Conditions

HSH observed parking operations and demand at the 35 Northampton Street Garage and conducted a survey to identify who is currently using the facility. HSH notes the following key observations:

- The existing garage currently has 539 striped spaces and serves both transient users (i.e., hourly) and monthly card holders.
- The garage experienced peak weekday demand during the mid-day period (approximately 2 p.m.) with 439 vehicles (approximately 81% occupied) – 100 vehicles fewer than the striped capacity. 90% occupancy is typically considered the effective capacity of large public parking garages, which corresponds to an effective capacity of only 486 spaces.
- Level 2 (ground level) and Level 3 are heavily utilized during the peak mid-day period (each approximately 95% occupied); however, Level 1 is underutilized with only 54% of spaces occupied during the mid-day peak period.
- Overnight parking demand was approximately 140 to 170 vehicles (approximately 25% to 30% occupied)

 this demand is likely attributed to the residential users at the McCormack Towers as well as night shift
 personnel at BMC.
- A total of 686 vehicles entered the garage and 659 vehicles exited the garage on a typical weekday. This corresponds to a parking space turnover rate of approximately 1.27 vehicles per space per day.
- There are currently approximately 663 outstanding monthly cards for the various users of the garage (1.2 monthly cards per space), including 252 cards (38%) for public parkers, 200 cards (30%) for BPHC employees, 103 cards (15%) for McCormack Tower Residents, 102 cards for contracted parkers (15%) and 6 cards for contractors and the TB clinic (<2%).
- The 103 monthly cards for residents of McCormack Towers corresponds to approximately 0.29 monthly cards per residential unit (103 cards/(234+112 units) = 0.30).
- Transient activity generally accounts for only 20% of garage use, while monthly card holders account for 80% of use, on average, during a typical week (Sunday through Saturday).
- A majority of the garage users are BPHC employees (31%), BMC employees (28%), and McCormack Tower residents (14%). Other users include the Boston Health Care for the Homeless (7%) located at 780 Albany Street, and the Carter Auditorium (6%) – on the day of the survey there was a conference at the auditorium – visitors of the McCormack Towers and BMC (6%), and the South End Fitness Center (5%).

Future Parking Supply and Demand

The proposed project will result in a net increase of 247 residential units, including 236 market rate units (62 studio, 111 one-bedroom, and 63 two-bedroom) within the proposed new tower on Northampton Street and the creation of 11 new handicapped-accessible units (8 studio and 3 one-bedroom) within the existing 35 Northampton Street tower. Parking for the new units will be accommodated within the existing garage, which is currently only approximately 81% occupied (or approximately 100 unused spaces) during the weekday mid-day period and only about 31% occupied (approximately 370 unused spaces) overnight (see **Figure 2**). In order to create additional handicap accessible parking spaces within the garage, and to provide an elevator linking all three levels of the garage with the new entry lobby shared by 860 Harrison and 35 Northampton Street, parking spaces within the garage will be reconfigured, reducing the total supply to 538 spaces.

35 Northampton Parking Garage

MEMORANDUM

Current residents of McCormack Towers (35 Northampton Street and 860 Harrison Avenue), which are fully occupied, however, account for only 103 monthly cards for 346 units, corresponding to a ratio of approximately 0.30 monthly cards per residential unit (103 cards/(234+112 units) = 0.30). This ratio is affected by the unit mix; 300 existing units (87%) are efficiency apartments. The unit mix for the new units is more heavily weighted to 1-bedroom (114 units or 46%) and 2-bedroom (63 units or 26%) units than the existing mix, thereby suggesting a slightly higher parking ratio. According to parking survey data collected by HSH throughout the City, parking demand at similar market rate units is approximately 0.50 spaces per unit, which is consistent with the Boston Transportation Department (BTD) residential guidelines for this area of the City (Boston Medical Center) of a **maximum** of 0.5 to 1.0 spaces per unit. Thus, it is anticipated that the new units would yield a parking demand ranging between 75 spaces (assuming current demand ratio of 0.30 spaces per unit) and 122 spaces (assuming current market demand of 0.50 spaces per unit for the 236 market rate units and 0.30 spaces per unit for the 11 new accessible units at the existing 35 Northampton Street Tower).

According to the Urban Land Institute's publication Shared Parking, Second Edition, residential parking demand is typically highest overnight, roughly between 6 p.m. and 7 a.m. (when the garage is the least occupied) and is the lowest during the day (when the garage reaches its peak occupancy). Using time of day demand factors for residential uses, HSH calculated the weekday parking demand by hour for the new residential units assuming 0.5 spaces per unit. The resulting weekday parking demand by hour is illustrated in **Figure 8**.

Figure 8. Projected Demand by Hour

35 Northampton Parking Garage

MEMORANDUM

As shown in **Figure 8**, parking demand for the 247 new residential units can be effectively accommodated within the existing garage without any impact to current monthly lease agreements or transient activity. It is expected that parking demand associated with the new residential units could yield as much as about \$146,000 in new annual revenue for the garage assuming current monthly rates for McCormack Tower residents (i.e., [236 units x 0.5 spaces/market rate unit x \$100 per month + 11 units x 0.3 spaces/unit x \$100 per month] x 12 months = \$145,560 per year).

Conclusion

The existing 539-space Northampton Garage is currently underutilized throughout the week, with an average occupancy of only approximately 80% during the weekday peak periods and is typically less than 30% occupied during the weekday evening and throughout the day on Saturday and Sunday. Consequently, the parking demand for proposed 247 new residential units can be effectively accommodated within the existing garage without any impact to current monthly lease agreements or transient activity.

It is expected that parking demand associated with the new residential units could yield up to as much as nearly \$146,000 in new annual revenue for the garage assuming current monthly rates for the McCormack Tower residents.

Northampton Tower Detailed Trip Generation Estimation Howard/Stein-Hudson Associates

August 14, 2013

Land Use Code (LUC)	Size	Category	Directional Split	Trip Rates (Trips/ksf or unit)	Unadjusted Vehicle Trips	Capture Rate	Less capture trips	Assumed national vehicle occupancy rate ¹	Converted to Person trips	Transit Share ²	Transit Trips	Walk/Bike/ Other Share ²	Walk/ Bike/ Other Trips	Vehicle Share ²	Vehicle Person Trips	Assumed local vehicle occupancy rate ³	Total Adjusted Vehicle Trips
Daily																	
Residential - Apartments ⁴	218	Total		6.65	1450		1450	1.2	1,740		296		452		992	1.2	828
	Units	In	0.5	3.33	725		725	1.2	870	17%	148	26%	226	57%	496	1.2	414
		Out	0.5	3.33	725		725	1.2	870	17%	148	26%	226	57%	496	1.2	414
AM Peak Hour																	
Residential - Apartments ⁴	218	Total		0.51	111		111	1.2	134		36		36		61	1.2	51
	Units	In	0.2	0.10	22		22	1.2	27	19%	5	27%	7	54%	14	1.2	12
		Out	0.8	0.41	89		89	1.2	107	29%	31	27%	29	44%	47	1.2	39
							PI	I Peak Hou	Jr								
Residential - Apartments ⁴	218	Total		0.62	135		135	1.2	162		42		44		77	1.2	65
	Units	In	0.65	0.40	88		88	1.2	105	29%	31	27%	28	44%	46	1.2	39
		Out	0.35	0.22	47		47	1.2	57	19%	11	27%	15	54%	31	1.2	26

Notes:

1. 2001 National vehicle occupancy rates - 1.2: Home to work; 1.6

2. Mode shares based on BTD Data for Area 15.

3. Local vehicle occupancy rates based on 2000 Census data and 2001 National VOR.

4. ITE Trip Generation Equation, 9th Edition, LUC 220 (Apartment) - Average rates

Northampton Tower - Alternative 2

Detailed Trip Generation Estimation Howard/Stein-Hudson Associates

September 17, 2013

Land Use Code (LUC)	Size	Category	Directional Split	Trip Rates (Trips/ksf or unit)	Unadjusted Vehicle Trips	Capture Rate	Less capture trips	Assumed national vehicle occupancy rate ¹	Converted to Person trips	Transit Share ²	Transit Trips	Walk/Bike/ Other Share ²	Walk/ Bike/ Other Trips	Vehicle Share ²	Vehicle Person Trips	Assumed local vehicle occupancy rate ³	Total Adjusted Vehicle Trips
								Daily									
Residential - Apartments ⁴	190	Total		6.65	1264		1264	1.2	1,516		258		394		864	1.2	722
	Units	In	0.5	3.33	632		632	1.2	758	17%	129	26%	197	57%	432	1.2	361
		Out	0.5	3.33	632		632	1.2	758	17%	129	26%	197	57%	432	1.2	361
Office - General Office Building⁵	40	Total		11.03	441		441	1.2	529		127		95		307	1.2	256
	KSF	In	0.5	5.52	221		221	1.2	265	24%	64	18%	48	58%	154	1.2	128
		Out	0.5	5.52	221		221	1.2	265	24%	64	18%	48	58%	154	1.2	128
Total		Total			1705				2046		385		489				978
		In			852				1023		192		245				489
		Out			852				1023		192		245				489
							A	M Peak Ho	ur								
Residential - Apartments ⁴	190	Total		0.51	97		97	1.2	117		32		32		53	1.2	44
	Units	In	0.2	0.10	19		19	1.2	23	19%	4	27%	6	54%	13	1.2	10
		Out	0.8	0.41	78		78	1.2	94	29%	27	27%	25	44%	41	1.2	34
Office - General Office Building⁵	40	Total		1.56	62		62	1.2	75		21		13		40	1.2	34
	KSF	In	0.88	1.37	55		55	1.2	66	27%	18	18%	12	55%	36	1.2	30
		Out	0.12	0.19	7		7	1.2	9	40%	4	17%	2	43%	4	1.2	3
Total		Total			159				192		53		45				78
		In			74				89		22		18				40
		Out			85				103		30		27				38
							PI	M Peak Ho	ur								
Residential - Apartments ⁴	190	Total		0.62	118		118	1.2	141		37		38		67	1.2	56
	Units	In	0.65	0.40	77		77	1.2	92	29%	27	27%	25	44%	40	1.2	34
		Out	0.35	0.22	41		41	1.2	49	19%	9	27%	13	54%	27	1.2	22
Office - General Office Building ⁵	40	Total		1.49	60		60	1.2	72		20		12		38	1.2	32
	KSF	In	0.17	0.25	10		10	1.2	12	40%	5	17%	2	43%	5	1.2	4
		Out	0.83	1.24	49		49	1.2	59	27%	16	18%	11	55%	33	1.2	27
Total		Total			177				213		57		57				88
		In			87				104		32		27				39
		Out			91				109		26		25	1		1	49

Notes:

1. 2001 National vehicle occupancy rates - 1.2: Home to work; 1.6

2. Mode shares based on BTD Data for Area 15.

3. Local vehicle occupancy rates based on 2000 Census data and 2001 National VOR.

4. ITE Trip Generation Equation, 9th Edition, LUC 220 (Apartment) - Average rates

Appendix 2

WIND STUDY

ENVIRONMENTAL

University of Guelph Research Park 150 Research Lane, Suite 105 Guelph, ON, N1G 4T2 226.706.8080 | www.novusenv.com

- Date: September 24, 2013
- To:Richard Jabba, Senior PlannerFort Point Associates, Inc.
- Re: Pedestrian Wind Study Northampton Square Northampton Street Tower Boston, MA Novus Project # 13-0122

Novus Team:

Air Quality ScientistJenny Vesely, B.Eng., EITSenior Specialist:Bill F. Waechter, C.E.T.Partner, SpecialistR.L. Scott Penton, P.Eng.

Novus Ref.: 13-0082

Boston, MA INTRODUCTION

1.0

Northampton Square - Northampton Street Tower

Novus Environmental Inc. (Novus) was retained by Fort Point Associates, Inc. to conduct a quantitative Pedestrian Wind Study for the proposed Northampton Square development located at 35 Northampton Street in Boston, MA. The assessment is in support of the Planned Development Area (PDA) review for the Boston Redevelopment Authority (BRA).

Nature of the Existing Subject Lands 1.1

The subject property is located at the corner of Northampton Street and Albany Street, south of the existing Community Health and Education Center. The site is currently a landscaped lawn and a portion of the existing Miranda Creamer building on Albany Street. The new building will be located directly adjacent to and above the existing buildings of Northampton Square. An aerial view to locate the project site is provided in Figure 1.

Proposed Development 1.2

The proposed development is a 24-storey residential tower, including underground parking and a fitness center. Development highlights include:

- Outdoor amenity space at grade-level; ٠
- Landscape terrace at level 3, on the existing parking garage • rooftop; and,
- Three main entryways.

The site plan, which also illustrates the landscape terrace above the existing parking garage, is shown in Figure 2.

Figure 1: Context Plan Showing Development Site

Aerial Image from Bing Maps

Pedestrian Wind Study

September 24, 2013

Northampton Square - Northampton Street Tower Boston, MA

Novus Ref.: 13-0082
1.3 Nature of the Surroundings

The subject property is located at the corner of Northampton Street and Albany Street, at the landscaped lawn south of the existing Community Health and Education Center. An aerial view of the development site and surroundings is shown in **Figure 3**, and includes a circular overlay showing the limits of the wind tunnel model area.

The proposed tower is surrounded by medical and other institutional, as well as commercial sites. There are some existing taller towers in the area, including the tower at 35 Northampton Street.

There are a number of newly approved and proposed developments that were also included in the model, as per the guidance of the BRA. The following developments were included, and are located in **Figure 3**:

- 1) Madison Tropical Parcel 10.
- 2) Melnea Hotel and Residences.
- 3) BUMC New Ambulatory Care Centre.
- 4) BUMC IMP and Energy Facility.
- 5) BioSquare 1 NPC Master Plan Amendment.
- 6) 10 George St.
- 7) Albany Fellows.

Figure 3: Development Site Area Aerial Image from Bing Maps

1.4 Areas of Interest for Pedestrian Wind Comfort

In addition to public sidewalks, locations of interest for the assessment of pedestrian wind comfort are shown in **Figure 4** and include:

- 1. Main entrances.
- 2. Outdoor Amenity Space.
- 3. Public transit stops along Massachusetts Avenue and Albany Street.
- 4. Parks.

The entrances to the proposed development are located on the northeast side of the building, and at the southwest and southeast corners of the building, as shown in **Figures 2 and 5**. Bus stops are located on both sides of Massachusetts Avenue near Harrison Avenue and Albany Street as well as on Albany Street at Northampton Street, and north of Massachusetts Avenue. Two outdoor amenity spaces at grade are associated with the development, northeast of the proposed building and along Northampton Street, west of the proposed building. A rooftop amenity terrace at Level-3, above the existing parking garage, is shown in **Figure 2 and 5**.

Pedestrian Wind Study

September 24, 2013

Proposed Building EntranceOutdoor Amenity Space

Figure 4: Development Site Area Aerial Image from Google Earth

2.0 APPROACH

A 1:400 scale model of the Northampton site and surroundings was constructed based on:

- Drawing information received from the project team on August 2, 2013;
- Guidance and drawings received from the BRA for new surrounding developments; and,
- Referral to aerial images (Google Earth and Bing Maps).

Two scenarios were tested: No-Build (existing conditions) and Build (addition of the Northampton proposed development). Both scenarios included the newly approved and proposed developments, identified in **Section 1.3**. The modeling followed the requirements outlined in Appendix 5 (Protocol for Quantitative Pedestrian Level Wind Impact Analysis) of the 2006 BRA Development Review Guidelines.

The proximity model of the surrounding area was built in block form for a radius of approximately 2000 feet from the site center. The structures surrounding the site will influence wind characteristics and therefore existing buildings, those under construction and planned developments were included in the model. Grade differences in the study area were found to be minor, thus the site was modeled as flat. Existing and proposed landscaping on and around the development property were not modeled, in order to identify local wind conditions attributed to the built form alone. In general, good landscaping coverage will improve wind comfort levels predicted during seasons when foliage is present, and also in the winter should coniferous trees be present or proposed.

Photographs of the wind tunnel model showing the extent of the modelled area for the proposed site configurations are shown in **Figures 5** and **6**.

2.2 Wind Tunnel

Wind tunnel tests were conducted in the Alan G. Davenport Wind Engineering Group Boundary-Layer Wind Tunnel Laboratory at the University of Western Ontario, London, Ontario. The upstream test section of the wind tunnel included generic roughness blocks and turbulence-generating spires to modify the wind flow approaching the model. These features develop characteristics of the wind flow that are similar to the actual site. The test model was rotated on a turn-table to simulate different wind directions with the upstream terrain being changed as appropriate to reflect the various upwind conditions encountered around the site.

The test model was equipped with 99 omni-directional probes to record wind speed at the pedestrian-level (5 ft). The orientation of the model was adjusted in 10° intervals on the turn-table to permit measurement of wind speed at each probe location for 36 wind angles. The wind tunnel data were then combined with the wind climate model for this region to predict the occurrence of wind speeds in the pedestrian realm and to compare against wind criteria for comfort and safety. The wind tunnel testing was conducted in accordance with the guidelines outlined in Appendix 5 (Protocol for Quantitative Pedestrian Level Wind Impact Analysis) of the 2006 BRA Development Review Guidelines.

Figures 7 and **8** show the sensor probe locations tested and follow the sensor layout reviewed and approved by the BRA. The same probe locations were tested for the No-Build and Build scenarios.

Figure 5: Wind Tunnel Model – View from East

Figure 6: Wind Tunnel Model – View from Northeast

Novus Ref.: 13-0082

Pedestrian Wind Study September 24, 2013

Figure 7: Wind Sensor Locations (90) at Ground-Level

Novus Ref.: 13-0082

3.0 PEDESTRIAN WIND CRITERIA

The wind comfort conditions are discussed in terms of being acceptable for certain pedestrian activities and are based on wind force. Pedestrian activity, wind chill, clothing, humidity and exposure to direct sun, for example, all affect pedestrian (thermal) comfort; however, these influences are not considered in the Melbourne (BRA) wind force criteria.

The criteria for wind comfort and safety used in this assessment are based on those adopted by the BRA for assessing pedestrian level winds. This criteria are based on the work of Melbourne. Information regarding the criteria is contained in the references.

The wind comfort criteria, which are based on predicted hourly mean wind speeds being exceeded 1% of the time, are summarized in the upper table on the right.

A second method adopted by the BRA for evaluating wind comfort is a guideline based on the effective gust wind speed. The effective gust velocity (defined as the mean hourly wind speed + 1.5 times the root mean square variation about the mean wind speed) of 31 mph should not be exceeded more than 1% of the time (approximately 18 hours per year). The BRA Effective Gust Guideline is shown in the lower table on the right.

Melbourne Criteria Wind Category	Activity	nges for BRA Speed Criteria % of the Time			
1	Comfortable for Sitting	≤ 12 mph	≤ 5 m/s		
2	Comfortable for Standing	12 and ≤ 15 mph	>5 and ≤ 7 m/s		
3	Comfortable for Walking	15 and ≤ 19 mph	7 and ≤ 8.5 m/s		
4	Uncomfortable for Walking	8.5 and ≤ 12 m/s			
5	Unacceptable - Dangerous	> 27 mph	> 12 m/s		
	BRA Fff	ective Gust Gui	deline		
Acceptability	Exceeded 1% of	an Wind Speed			
	+ 1.5 Tim	es Root Mean	Square)		

Notes: Mean wind speed criteria based on Melbourne criteria.

≤ 13.9 m/s

≤ 31 mph

Meets

Guideline

4.0 WIND CLIMATE

Wind data recorded at Boston Logan Airport for the 30 year period of 1981 – 2011 were obtained and analysed to create a wind climate model for the four seasons. Annual and seasonal wind distribution diagrams ("wind roses") are shown in **Figures 9** and **10**. These diagrams illustrate the percentage of time wind blows from the 16 main compass directions. Of main interest are the longest peaks that identify the most frequently occurring wind directions. The annual wind rose in **Figure 9** indicates that wind approaching from the west-northwest, southwest and northwest directions are most prevalent. The four seasonal wind roses readily show how prevailing winds shift direction during the year.

The directions from which stronger winds (e.g., > 30 mph) approach are also of interest as they have a higher potential of creating problematic wind conditions, depending upon site exposure and building configurations. The wind roses in **Figure 9** also identify the directional frequency of these stronger winds, as indicated in the figure's legend colour key. On an annual basis, strong winds occur most frequently from the west-northwest and northwest directions. All wind speeds and directions were included in the wind climate model.

Figure 9: Wind Rose for Boston Logan Airport (1981 – 2011)

WIND CLIMATE (continued)

The same 30 year period of wind data recorded at Boston Logan Airport were also analysed to generate wind roses that illustrate directionality associated with the BRA 1% wind criteria.

The mean wind speed that occurs 1% of the time was determined for each season and on an annual basis, and the directional distribution plotted in the wind roses shown in **Figure 10**.

The annual wind rose indicates that for wind speeds above the 1% threshold of 17 mph, wind approaches most frequently from the west-northwest and northeast. In the springtime the 1% wind speed threshold is 16 mph and the dominant direction is northeast. In the summer the 1% threshold wind speed is 13 mph and southwest winds prevail. The autumn 1% wind speed threshold is 17 mph and the most frequently occurring direction is westnorthwest. The winter season 1% threshold speed is highest and is 18 mph. During the winter the westnorthwest and northeast winds occur most often.

5.0 RESULTS

5.1 Presentation of Results

The analysis of wind comfort was undertaken for all four seasons in this study, as well as annually for both the No-Build and Build scenarios. The annual results are the focus of discussion within this report and are displayed on plans and in graph form, as per the examples below. Full detailed results for all four seasons and the annual conditions at each measured sensor location are tabulated and presented in **Appendix A**.

Figure 11: Example Results - Melbourne Wind Comfort Criteria (Annual 1% Mean Wind Speeds)

Figure 12: Example Results - BRA Effective Gust Guideline (Annual 1% Effective Gust Wind Speeds)

5.2 Discussion of Results

There are generally accepted wind comfort levels that are desired for various pedestrian uses. For example, for public sidewalks, wind comfort suitable for Melbourne Category 3 (walking) would be desirable year-round. For main entrances and transit stops, winds rated as Category 2 (standing) would be preferred throughout the year, but can be difficult to achieve in regions where winter winds are inherently harsh. For amenity spaces, wind conditions suitable for Category 1 or 2 (sitting or standing) are generally desirable during summer months. The more stringent criterion of Category 1 (sitting) is most appropriate in the summer for amenity spaces such as cafes and pocket parks.

5.2.1 Albany Street (Locations 1 – 31)

Albany Street runs along the southeast side of the proposed development. Two bus stops, a main entrance to the proposed building and a proposed outdoor amenity space are along this street (See **Figure 4**).

Figure 13 shows the predicted comfort conditions on Albany Street for the No-Build and Build configurations. **Figures 14** and **15** show the predicted mean and effective gust wind speeds, respectively, at each sensor location for the No-Build and Build configurations.

Main entrances to the proposed building are near Locations 11 and 15. At Location 11, Category 4 wind conditions improved to Category 3 for the Build scenario. At Location 15, Category 1 winds were predicted for both test scenarios, noting a reduction in wind speeds for the Build scenario. These comfort conditions are satisfactory.

At the proposed outdoor amenity space (Location 16), annual conditions were rated Category 3 in the Build configuration. The inclusion of canopy trees, such as those that exist, would improve conditions, especially during the warmer months.

Wind conditions on Albany Street south of Northampton Street were in most locations similar for the No-Build and Build scenarios. Wind Category 2 or 3 were typically predicted. Exceptions were at the intersection at Location 6 (bus stop) and Location 10. Winds at the Location 6 increased from Category 2 to 3 in the Build configuration, while annual winds at Location 10 were marginally in Category 4 and were Category 5 in the winter. The BRA Effective Gust Guideline was not met at Location 10. If improved wind comfort is desired for these locations, Marcescent species trees could be considered in the area.

Between Northampton Street and Massachusetts Avenue on Albany Street, conditions were mainly predicted to be Category 3 or 4. Wind speeds typically increased for the Build configuration in this area due to east, and west winds. Dense foliage trees (ideally Marcescent species) planted along the Albany street property edge may provide some improvement. On Albany Street, north of Massachusetts Avenue, Category 1 conditions were typically predicted, except at the corner of this intersection where Category 3 or 4 were predicted.

For the No-Build configuration, the BRA Effective Gust Guideline was met at all locations annually, except at Location 29 on Albany Street. The guideline was also exceeded at this location for the Build scenario.

For the Build scenario, the BRA Effective Gust Guideline was exceeded at the southeast corner of Northampton Street (Location 10), at Albany Street and Massachusetts Avenue (Locations 17, 18, 23 and 24) and across the street from the proposed development on Albany Street (Location 20). The west-northwest, north and east-southeast winds were, on average, most active at these locations. We anticipate that the existing deciduous trees north of the proposed tower will partially improve wind conditions at the four locations near the Albany and Massachusetts intersection, although coniferous or Marcescent species would be needed to provide wintertime improvement. The east side of Albany, near Location 20, is mainly a pedestrian thoroughfare and there are no doors in that area.

Pedestrian Wind Study September 24, 2013

Figure 13: Predicted Results for Annual No-Build and Build Conditions on Albany Street

Pedestrian Wind Study September 24, 2013

Figure 14: Wind Comfort Results for Albany Street - Annual

Figure 15: BRA Effective Gust Guideline Results for Albany Street - Annual

Pedestrian Wind Study

September 24, 2013

5.2.2 Northampton Street and Fellows Street (Locations 53, 54, 57, 58 and 60 - 90)

Northampton Street runs along the southwest side of the proposed development. One main entrance and an outdoor amenity space are proposed along this street. **Figure 16** shows the predicted conditions on Northampton Street and Fellows Street for the No-Build and Build scenarios. **Figures 17** and **18** show predicted mean and effective gust wind speeds, respectively, at each location for No-Build and Build conditions. The results for Locations 10, 11 and 19 were reviewed in Section 5.2.1, Albany Street.

Existing (No-Build) wind comfort on Northampton Street between Harrison Avenue and west of the proposed tower, was in most cases unchanged or improved under Build conditions. This was common to both sides of this section of Northampton Street. On average the annual wind conditions were Category 3 or 4. The BRA Guideline was exceeded at several locations in this same area (Locations 63, 65, 71, 72, 73 and 74) for the No-Build scenario. The Build configuration typically improved conditions such that effective gust wind speeds at these locations were predicted to be marginally above or below the BRA Guideline. Wind comfort at the proposed outdoor amenity space (Location 65) was improved to Category 3 under the Build scenario, but measures, such as landscaping, planters, etc., should be considered to improve wind comfort at this location.

Near the proposed tower on Northampton Street (Locations 66, 67, 75 and 76), existing (No-Build) winds were Category 4 at all but Location 76, which was Category 3. Under the Build configuration, wind activity increased to Category 5 at Locations 66 and 67 and to Category 4 at Locations 75 and 76). A main entrance is proposed near Location 66. Wind gusts typically from the southeast and west affect Location 66, whereas strong gusts from the east-southeast and east directions typically influenced Locations 67, 75 and 76.

The east winds would tend to flow down the Albany St façade of the proposed tower. Wind control measures with a horizontal component, such as canopies, trees, etc. are recommended along several bays of the Albany Street façade, nearer to Northampton Street. The use of Marcescent trees would be a more effective choice for on-site and off-site locations and also for harsh winter winds. The BRA Guideline was not met for three of these four locations under No-Build and at all four locations under the Build scenario.

On Northampton Street, between Albany Street and Melnea Cass Boulevard (Locations 77 – 84), wind comfort levels were on average Category 2 or 3 under both the No-Build and Build configurations. The BRA Effective Gust Guideline was met at all locations for both test scenarios.

Overall, the proposed development had a neutral to slightly positive influence on wind comfort conditions on and near Fellows Street (Locations 85 – 90). Under No-Build: Category 4 winds were predicted at Locations 85, 86 and 87; Category 5 at Location 88; and, Category 3 at Location 89. These conditions generally remained under the Build scenario, noting that pedestrians would not perceive the category change at Location 85. Wind speeds were more noticeably reduced at Location 88, but conditions remained in Category 5. The strongest gusts affecting Location 88 were typically from the south and east-southeast directions. Location 90 is near a retail business main entrance. Winds at this location were rated as Category 1 for both the No-Build and Build site conditions. Locations 86, 87 and 88 were above the BRA Guideline for both test configurations.

Figure 16: Predicted Results for Annual No-Build and Build Conditions on Northampton Street and Fellows Street

Figure 17: Wind Comfort Results for Northampton Street and Fellows Street – Annual

Pedestrian Wind Study September 24, 2013

Figure 18: BRA Effective Gust Guideline Results for Northampton Street and Fellows Street - Annual

Pedestrian Wind Study

September 24, 2013

5.2.3 Massachusetts Avenue (Locations 32 – 50)

A summary of the predicted conditions on Massachusetts Avenue are shown in **Figure 19** for the No-Build and Build configurations. **Figures 20** and **21** present the predicted mean and effective gust wind speeds at each sensor location for the No-Build and Build configurations.

Wind conditions on or near Massachusetts Avenue, between Albany Street and Melnea Cass Boulevard (Locations 32 – 38) ranged from Category 1 through 3 for both the No-Build and Build configurations. Location 36 changed from Category 1 (No-Build) to the upper limit of Category 2 for the Build scenario. No-Build wind categories at other locations did not change under the Build site conditions. All locations in this area of Massachusetts Avenue met the BRA Guidelines for both test configurations.

No-Build winds on Massachusetts Avenue, between Albany Street and Harrison Avenue, (Locations 39 - 50), generally varied between Category 2 and 3, with two locations rated Category 1 (Locations 46 and 49) and two rated Category 4 (Locations 44 and 47). With the Build configuration, wind conditions at the bus stop near Location 39 increased from Category 3 to 4 and exceeded the BRA Guideline. A glazed transit shelter exists in this area and will provide bus patrons with the necessary shelter on windy days. In addition, canopy trees similar to those that exist on-site around Massachusetts Avenue and Albany Street will help reduce some of the wind activity associated with the east and southeast winds that influence the bus stop area. Moving along this same side of Massachusetts Avenue towards Harrison Ave (Locations 40 -44), wind conditions under Build conditions either remained similar to No-Build or were improved. Winds at the bus stop near Location 43 were improved under Build conditions from Category 3 to 1. Wind conditions at Location 44 were marginally above the BRA Effective Gust Guideline for the No-Build and Build scenarios.

On the opposite side of Massachusetts Avenue, from Location 45 to Location 50, the No-Build wind conditions were typically between Category 1 and 3, with the exception of Location 47 which was rated as Category 4. Increased wind activity under a Build scenario was noted at several locations, but overall Category 3 winds will generally prevail in the area. The transit stop at Location 49 remained as Category 1. The Build configuration reduced wind speeds at Location 47, but the area remained

in Category 4.

Figure 19: Predicted Results for Annual No-Build and Build Conditions on Massachusetts Avenue

Pedestrian Wind Study September 24, 2013

Figure 20: Wind Comfort Results for Massachusetts Avenue - Annual

Pedestrian Wind Study September 24, 2013

Figure 21: BRA Effective Gust Guideline Results for Massachusetts Avenue - Annual

5.2.4 Harrison Avenue (Locations 51 - 59)

A visual summary of the annual wind conditions predicted on Harrison Avenue are presented in **Figure 22** for the No-Build and Build test configurations. **Figures 24** and **25** show the predicted mean and effective gust wind speeds at each sensor location for both test configurations. Results for Locations 44 and 50 are provided for reference, but were discussed in Section 5.2.3, Massachusetts Avenue.

Wind conditions at the majority of the locations along Harrison Avenue were predicted to remain the same for the No-Build and Build scenarios. Winds were rated as Category 1, 2 or 3 at all locations, except Location 53, which was rated as Category 4 for the No-Build and Build configurations.

All these locations along Harrison Avenue were predicted to meet the BRA Effective Gust Guideline for the No-Build and Build configurations.

5.2.5 Level-3 Roof Terrace (Locations 91 – 99)

A private roof terrace is proposed on the third level, above the existing parking garage and will connect to an existing roof terrace for the residential building at 860 Harrison Avenue.

Figure 23 provides a summary of the predicted annual wind conditions on the terrace for the No-Build and Build configurations. The predicted mean and effective gust wind speeds at each sensor location for the two test configurations are presented in the graphs of **Figures 24** and **25**.

On the roof terrace of 860 Harrison Avenue (Locations 91 - 94), wind comfort for the No-Build conditions were unchanged by the proposed development. Minor wind speed reductions were generally predicted; however, existing wind comfort levels were unaffected. Winds at Locations 90 and 91 were Category 3 and 2, respectively, and were Category 4 at Locations 93 and 94. The presence of landscaping (trees, planters, trellis features, etc.), will improve upon conditions.

Wind conditions on the roof terrace of 35 Northampton (Locations 95 – 99) varied between increases and decreases relative to the No-Build configuration. Ultimately, under the Build configuration the average wind conditions will hover between the threshold of Categories 3 and 4. These conditions are higher than is desired for an outdoor terrace where Category 1 or 2 winds would be ideal. As the roof terrace plan is in an early design stage, strategic planning of the roof space and use of wind control features such as landscaping, wind screens, trellis elements, etc. are recommended to enhance occupant comfort for seasonal use.

The effective gust criterion was predicted to be exceeded at Locations 93 and 94 (860 Harrison Ave terrace) for both test configurations. Locations 97 and 99 marginally exceeded the BRA guideline under the Build scenario. Implementation of wind control features, as described previously, can be investigated to help mitigate these conditions.

Figure 22: Predicted Results for Annual No-Build and Build Conditions on Harrison Avenue

Figure 23: Predicted Results for Annual No-Build and Build Conditions on Level-3 Roof Terrace

Pedestrian Wind Study September 24, 2013

Figure 24: Wind Comfort Results for Harrison Avenue - Annual

Figure 25: BRA Effective Gust Guideline Results for Harrison Avenue - Annual

6.0 CONCLUSIONS AND RECOMMENDATIONS

Pedestrian wind conditions for the proposed 35 Northampton Avenue development were quantitatively assessed through wind tunnel tests for the No-Build and Build site conditions. The assessment is in support of the Planned Development Area (PDA) review for the Boston Redevelopment Authority (BRA). Based on the results of our assessment, the following conclusions and recommendations have been reached:

- The No-Build wind conditions along Albany Street generally remained or increased by one Melbourne Wind Category under the Build scenario. For the Build scenario, Category 4 winds were noted at five additional locations and seven locations exceeded the BRA Effective Gust Guideline. Three locations were marginally above the threshold wind speed. Investigation of mitigation (e.g., landscaping) is recommended.
- Existing (No-Build) wind comfort on Northampton Street from Harrison Avenue to west of the proposed tower, was in most cases unchanged or improved under Build conditions. Wind conditions on Northampton Avenue, between Albany Street and Melnea Cass Boulevard, were satisfactory (Category 2 or 3) for both test configurations.
- Existing wind conditions (mean and effective gust wind speeds) along Harrison Avenue were unaffected by the proposed development.

- Wind activity on Northampton Avenue adjacent the proposed tower (includes a proposed main entrance), increased from Category 4 to 5 under Build conditions. Investigation of wind control measures (e.g., landscaping) is recommended. For both test scenarios, Category 4 winds and exceedance of the BRA Effective Gust Guideline commonly occurred across Northampton Avenue from the proposed tower.
- The No-Build wind conditions along and near Fellows Street typically remained as they exist or were improved under Build conditions. Several locations remained above the BRA Guideline.
- With a few exceptions, wind conditions along Massachusetts Avenue were generally Category 1, 2 or 3 for both site conditions. Two locations were Category 4 under No-Build with one additional location for the Build scenario. Wind at these same three locations also exceeded the BRA Guideline. The Build scenario, however, improved wind conditions at the two locations that were above the guideline under No-Build.
- The proposed development had a positive effect on the No-Build wind conditions on the neighboring terrace of 860 Harrison Avenue. Overall, wind conditions were higher than desired for a terrace. The strategic placement and design of outdoor use areas and landscaping elements should be investigated as the landscape plan evolves.

Should you have any questions or concerns, please do not hesitate to contact the undersigned.

Sincerely, Novus Environmental Inc.

Bill F. Waechter, C.E.T. Senior Specialist – Microclimate

Henry Vesely

Jenny Vesely, B.Eng. EIT Air Quality Scientist

7.0 REFERENCES

Melbourne, W.H., 1978, "Criteria for Environmental Wind Conditions", Dupont, G., Clarenc, T., and Leyronnas, P. (2009) "UrbaWind Use of a CFD Journal of Industrial Aerodynamics, 3 (1978) 241-249. model for modeling the wind in Urban Area". International Small Wind Conference 2009, Watford, UK. BRA Development Review Guidelines 2006. Irwin, P.A. (2004) "Overview of ASCE Report on Outdoor Comfort Around Buildings: Assessment and Methods of Control" ASCE Structures Durgin, F.H. (1997) "Pedestrian level wind criteria using the equivalent average" Journal of Wind Engineering and Industrial Aerodynamics 66. Conference 2004. Wu, H., C.J. Williams, H.A. Baker and W.F. Waechter (2004) "Knowledge-Franke, J., Hirsch, C., Jensen, A.G., et al. (2004)"Recommendations on the based Desk-top Analysis of Pedestrian Wind Conditions", ASCE Structures use of CFD in Wind Engineering". Proc. Int. Conf. Urban Wind Eng. Build. Conference 2004. Aerodyn, von Karman Institute, Sint-Genesius-Rode, Belgium, 5-7 May, 2004. Caniot, Guillaume, Li, Wang, and Dupont, Guillaume (2011) "Validations Alan G. Davenport Wind Engineering Group, "Wind Tunnel Testing: A and Applications of a CFD Tool Dedicated to Wind Assessment in Urban General Outline" May 2007. Areas".

Pedestrian Wind Study September 24, 2013

Appendix A

Detailed Annual and Seasonal Results Mean Wind Speed and Effective Gust Speed Exceeded 1% of the Time

Pedestrian Wind Study	
September 24, 2013	

			Con	nfort Category	NOTE: Percent change is									
Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
1	Annual	20.7	19.5	_	Uncomfortable	Uncomfortable	greater than 10%	1	Annual	30.1	28.8		Acceptable	Acceptable
	Spring	21.1	19.9		Uncomfortable	Uncomfortable			Spring	30.7	29.3		Acceptable	Acceptable
	Summer	17.4	16.4		Walking	Walking			Summer	25.1	24		Acceptable	Acceptable
	Autumn	20	18.9		Uncomfortable	Walking			Autumn	29.1	27.9		Acceptable	Acceptable
	Winter	31.6	29.6		Dangerous	Dangerous			Winter	45.6	43.3		Unacceptable	Unacceptable
					0	0								
2	Annual	11.1	10.5		Sitting	Sitting		2	Annual	20	19		Acceptable	Acceptable
	Spring	11.5	10.8		Sitting	Sitting			Spring	20.9	19.7		Acceptable	Acceptable
	Summer	9.6	9.1		Sitting	Sitting			Summer	17.2	16.5		Acceptable	Acceptable
	Autumn	10.9	10.3		Sitting	Sitting			Autumn	19.5	18.7		Acceptable	Acceptable
	Winter	15.5	14.8		Walking	Standing			Winter	27.9	26.8		Acceptable	Acceptable
					Ū	Ū								
3	Annual	14.6	14.3		Standing	Standing		3	Annual	25.2	24.6		Acceptable	Acceptable
	Spring	14.9	14.6		Standing	Standing			Spring	25.9	25.4		Acceptable	Acceptable
	Summer	12.4	12.1		Standing	Standing			Summer	21.2	20.7		Acceptable	Acceptable
	Autumn	14.4	14		Standing	Standing			Autumn	24.6	24.1		Acceptable	Acceptable
	Winter	21.5	20.9		Uncomfortable	Uncomfortable			Winter	36.9	35.9		Unacceptable	Unacceptable
								4	Annual	30.4	29.3		Acceptable	Accentable
4	Annual	19.5	18.4		Uncomfortable	Walking		· ·	Spring	32.5	31.2		Linaccentable	
	Spring	20.9	19.7		Uncomfortable	Uncomfortable			Summer	27.6	25.9		Accentable	Accentable
	Summer	18	16.6		Walking	Walking			Autumn	29.4	28.4		Acceptable	Accentable
	Autumn	18.9	17.9		Walking	Walking			Winter	20.4 41 1	40.3		Inaccentable	Linaccentable
	Winter	26.2	25.2		Uncomfortable	Uncomfortable			Winter	41.1	40.5		Unacceptable	Onacceptable
					O	O <i>i</i>		5	Annual	20.3	21.8		Acceptable	Acceptable
5	Annual	12.1	13		Standing	Standing			Spring	20.7	22.8	21%	Acceptable	Acceptable
	Spring	12.3	13.9	16%	Standing	Standing			Summer	16.3	18	17%	Acceptable	Acceptable
	Summer	9.7	11.1	14%	Sitting	Sitting			Autumn	19.4	20.8		Acceptable	Acceptable
	Autumn	11.6	12.3		Sitting	Standing			Winter	29.9	30.9		Acceptable	Acceptable
	Winter	18.4	17.8		Walking	Walking							·	·
6	Annual	14.6	18.7	41%	Standing	Walking		6	Annual	25.7	29.7	40%	Acceptable	Acceptable
	Spring	14.9	18.9	40%	Standing	Walking			Spring	26.1	30	39%	Acceptable	Acceptable
	Summer	11.6	14.9	33%	Sitting	Standing			Summer	19.9	23.1	32%	Acceptable	Acceptable
	Autumn	13.9	17.7	38%	Standing	Walking			Autumn	24.3	28.1	38%	Acceptable	Acceptable
	Winter	21.3	27.5	62%	Uncomfortable	Dangerous			Winter	37.2	42.6	54%	Unacceptable	Unacceptable
7	Annual	14.6	14.4		Standing	Standing		_		05.0			A	A
'	Spring	15	14.7		Walking	Standing			Annual	25.2	24.3		Acceptable	Acceptable
	Spring	10.0	14.7		Standing	Standing			Spring	25.8	24.9		Acceptable	Acceptable
	Summer	12.8	12.0		Standing	Standing			Summer	21.3	20.8		Acceptable	Acceptable
	Autumn	14.3	14.1		Standing	Standing			Autumn	24.5	23.8		Acceptable	Acceptable
	winter	21.2	20.7		Uncomfortable	Uncomfortable			Winter	36.4	35		Unacceptable	Unacceptable
8	Annual	13.5	12.9		Standing	Standing		8	Annual	23	22.2		Acceptable	Acceptable
	Spring	14.1	13.6		Standing	Standing			Spring	24	23.2		Acceptable	Acceptable
	Summer	11.2	10.9		Sitting	Sitting			Summer	19	18.3		Acceptable	Acceptable
	Autumn	13	12.5		Standing	Standing			Autumn	22.2	21.5		Acceptable	Acceptable
	Winter	19	18.1		Uncomfortable	Walking			Winter	32.5	31.1		Unacceptable	Unacceptable

Pedestrian Wind Study September 24, 2013

	Comfort Category						NOTE: Percent change is							
Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
9	Annual	13	11.6	-14%	Standing	Sitting	greater than 10%	9	Annual	25	22.5		Acceptable	Acceptable
	Spring	13.7	12.2	-15%	Standing	Standing			Spring	26.4	23.7	-27%	Acceptable	Acceptable
	Summer	11.7	10.2	-15%	Sitting	Sitting			Summer	22.6	20	-26%	Acceptable	Acceptable
	Autumn	12.7	11.3	-14%	Standing	Sitting			Autumn	24.3	21.9		Acceptable	Acceptable
	Winter	18.6	16.5	-21%	Walking	Walking			Winter	34.5	31.2		Unacceptable	Unacceptable
10	Annual	13.7	19.9	62%	Standing	Uncomfortable		10	Annual	25.8	32.5	67%	Acceptable	Unacceptable
	Spring	14	20.1	61%	Standing	Uncomfortable			Spring	26.3	33	67%	Acceptable	Unacceptable
	Summer	10.9	15.4	45%	Sitting	Walking			Summer	19.9	25	51%	Acceptable	Acceptable
	Autumn	13.1	18.7	56%	Standing	Walking			Autumn	24.5	30.6	61%	Acceptable	Acceptable
	Winter	20	29.2	92%	Uncomfortable	Dangerous			Winter	37.8	47.8	100%	Unacceptable	Unacceptable
11	Annual	19.3	18.3		Uncomfortable	Walking		11	Annual	30.8	29.6		Acceptable	Acceptable
	Spring	19.7	18.8		Uncomfortable	Walking			Spring	31.4	30.1		Unacceptable	Acceptable
	Summer	15.1	14.7		Walking	Standing			Summer	24.2	22.8		Acceptable	Acceptable
	Autumn	18.1	17.3		Walking	Walking			Autumn	29	27.9		Acceptable	Acceptable
	Winter	29.4	26.3	-31%	Dangerous	Uncomfortable			Winter	46.5	43.6		Unacceptable	Unacceptable
12	Annual	12	14.1	21%	Standing	Standing		12	Annual	20.8	23.8	30%	Acceptable	Acceptable
	Spring	12.5	14.5	20%	Standing	Standing			Spring	21.2	24.4	32%	Acceptable	Acceptable
	Summer	10.1	11.9	18%	Sitting	Sitting			Summer	16.3	19.1	28%	Acceptable	Acceptable
	Autumn	11.6	13.5	19%	Sitting	Standing			Autumn	19.9	22.6	27%	Acceptable	Acceptable
	Winter	16.5	21.1	46%	Walking	Uncomfortable			Winter	29.4	35.1	57%	Acceptable	Unacceptable
13	Annual	17.9	18.2		Walking	Walking		13	Annual	27.7	25.8		Acceptable	Acceptable
	Spring	18.2	19.6		Walking	Uncomfortable		-	Spring	28.1	27.4		Acceptable	Acceptable
	Summer	13.8	17.1	33%	Standing	Walking			Summer	21.3	23.4		Acceptable	Acceptable
	Autumn	16.9	17.6		Walking	Walking			Autumn	26.1	25		Acceptable	Acceptable
	Winter	26.1	25.1		Uncomfortable	Uncomfortable			Winter	40.4	35.9	-45%	Unacceptable	Unacceptable
11	Annual	177	20.7	30%	Walking	Lincomfortable		1/	Annual	26.0	20.0	30%	Accentable	Accentable
'*	Spring	17.7	20.7	J10/	Walking	Uncomfortable		14	Spring	20.3	23.3	38%	Acceptable	Linaccentable
	Summor	12.6	10.1	-FF%	Standing	Uncomfortable			Summor	20.7	25.8	51%	Accentable	Accentable
	Autumn	16.7	20.1	34%	Walking	Uncomfortable			Autumn	25.5	28.0	34%	Accentable	Accentable
	Winter	25.8	28.9	31%	Lincomfortable	Dangerous			Winter	39.3	42.2	0470	Linaccentable	Linaccentable
	Winter	20.0	20.5	0170	Onconnontable	Daligerous			Winter	00.0	72.2		Onacceptable	Onacceptable
15	Annual	11.3	9.4	-19%	Sitting	Sitting		15	Annual	18.6	17.5		Acceptable	Acceptable
	Spring	11.6	9.7	-19%	Sitting	Sitting			Spring	19	17.8		Acceptable	Acceptable
	Summer	9.2	7.5	-17%	Sitting	Sitting			Summer	15.1	13.3	-18%	Acceptable	Acceptable
	Autumn	10.9	9.1	-18%	Sitting	Sitting			Autumn	18.1	16.8		Acceptable	Acceptable
	Winter	15.5	13.4	-21%	Walking	Standing			Winter	26	25		Acceptable	Acceptable
16	Annual	10.9	15.9	50%	Sitting	Walking		16	Annual	18.7	29.6	109%	Acceptable	Acceptable
	Spring	11.5	16.5	50%	Sitting	Walking			Spring	19.3	30.3	110%	Acceptable	Acceptable
	Summer	9.3	13.4	41%	Sitting	Standing			Summer	15.3	23.7	84%	Acceptable	Acceptable
	Autumn	10.3	15.3	50%	Sitting	Walking			Autumn	17.8	28.2	104%	Acceptable	Acceptable
	Winter	14.6	23	84%	Standing	Uncomfortable			Winter	26	43.9	179%	Acceptable	Unacceptable

Pedestrian Wind Study September 24, 2013

	Comfort Category						NOTE: Percent change is		Effective Gust					
Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
17	Annual	13.5	23.2	97%	Standing	Uncomfortable	greater than 10%	17	Annual	23.9	37.6	137%	Acceptable	Unacceptable
	Spring	13.7	23.7	100%	Standing	Uncomfortable			Spring	24.2	38.1	139%	Acceptable	Unacceptable
	Summer	10.7	18.6	79%	Sitting	Walking			Summer	18.5	29	105%	Acceptable	Acceptable
	Autumn	12.9	22.2	93%	Standing	Uncomfortable			Autumn	22.8	35.8	130%	Acceptable	Unacceptable
	Winter	19.4	33.9	145%	Uncomfortable	Dangerous			Winter	34.5	55.6	211%	Unacceptable	Unacceptable
18	Annual	16.6	23.5	69%	Walking	Uncomfortable		18	Annual	28.7	36.9	82%	Acceptable	Unacceptable
	Spring	16.6	23.8	72%	Walking	Uncomfortable			Spring	28.9	37.4	85%	Acceptable	Unacceptable
	Summer	15.1	18.7	36%	Walking	Walking			Summer	25.3	29.5	42%	Acceptable	Acceptable
	Autumn	16.3	22.3	60%	Walking	Uncomfortable			Autumn	28	35.1	71%	Acceptable	Unacceptable
	Winter	24.8	35.2	104%	Uncomfortable	Dangerous			Winter	42.8	55.1	123%	Unacceptable	Unacceptable
19	Annual	15.8	17.2		Walking	Walking		19	Annual	26.3	27.8		Acceptable	Acceptable
	Spring	16.3	17.6		Walking	Walking			Spring	27.1	28.3		Acceptable	Acceptable
	Summer	12.8	13.8		Standing	Standing			Summer	20.9	21.7		Acceptable	Acceptable
	Autumn	15	16.4		Walking	Walking			Autumn	24.9	26.4		Acceptable	Acceptable
	Winter	22.9	24.7		Uncomfortable	Uncomfortable			Winter	38.8	39.9		Unacceptable	Unacceptable
20	Annual	10.8	24.6	138%	Sitting	Uncomfortable		20	Annual	21	36.6	156%	Acceptable	Unacceptable
	Spring	11	25.1	141%	Sitting	Uncomfortable			Spring	21.3	37.2	159%	Acceptable	Unacceptable
	Summer	8.3	19.5	112%	Sitting	Uncomfortable			Summer	16.1	28.7	126%	Acceptable	Acceptable
	Autumn	10.2	23.1	129%	Sitting	Uncomfortable			Autumn	19.7	34.1	144%	Acceptable	Unacceptable
	Winter	15.8	38.1	223%	Walking	Dangerous			Winter	31	55.5	245%	Unacceptable	Unacceptable
21	Annual	14.9	19	41%	Standing	Uncomfortable		21	Annual	25.5	29.3	38%	Acceptable	Acceptable
	Spring	15.1	19.2	41%	Walking	Uncomfortable			Spring	25.8	29.6	38%	Acceptable	Acceptable
	Summer	11.5	14.9	34%	Sitting	Standing			Summer	19.5	22.7	32%	Acceptable	Acceptable
	Autumn	13.9	18	41%	Standing	Walking			Autumn	23.8	27.6	38%	Acceptable	Acceptable
	Winter	22	27.6	56%	Uncomfortable	Dangerous			Winter	37.6	42.6	50%	Unacceptable	Unacceptable
22	Annual	15.7	16.5		Walking	Walking		22	Annual	27.5	27.6		Acceptable	Acceptable
	Spring	15.9	16.8		Walking	Walking			Spring	28	27.9		Acceptable	Acceptable
	Summer	12.1	13		Standing	Standing			Summer	21.3	21.3		Acceptable	Acceptable
	Autumn	14.7	15.8		Standing	Walking			Autumn	25.8	26.2		Acceptable	Acceptable
	Winter	23.2	24.2		Uncomfortable	Uncomfortable			Winter	40.8	40.2		Unacceptable	Unacceptable
23	Annual	17.4	19.4	20%	Walking	Uncomfortable		23	Annual	28.3	32	37%	Acceptable	Unacceptable
	Spring	17.7	19.6	19%	Walking	Uncomfortable			Spring	28.8	32.5	37%	Acceptable	Unacceptable
	Summer	13.5	14.9	14%	Standing	Standing			Summer	21.9	24.5	26%	Acceptable	Acceptable
	Autumn	16.4	18.2	18%	Walking	Walking			Autumn	26.7	30.1	34%	Acceptable	Acceptable
	Winter	25.8	29	32%	Uncomfortable	Dangerous			Winter	41.8	48	62%	Unacceptable	Unacceptable
24	Annual	18.9	20.5		Walking	Uncomfortable		24	Annual	29.5	31.2		Acceptable	Unacceptable
	Spring	19.3	20.8		Uncomfortable	Uncomfortable			Spring	30.1	31.7		Acceptable	Unacceptable
	Summer	15.6	16.4		Walking	Walking			Summer	24.4	25.2		Acceptable	Acceptable
	Autumn	18.2	19.5		Walking	Uncomfortable			Autumn	28.5	29.9		Acceptable	Acceptable
	Winter	27.9	30.4		Dangerous	Dangerous			Winter	43.2	46.3		Unacceptable	Unacceptable

Pedestrian Wind Study
September 24, 2013

			Con	nfort Categor	v		NOTE: Parcent change is							
Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
25	Annual	15.2	14.7		Walking	Standing	greater than 10%	25	Annual	26	25.1	Ŭ	Acceptable	Acceptable
	Sprina	15	15.3		Walking	Walking			Sprina	25.8	25.6		Acceptable	Acceptable
	Summer	14.5	13.7		Standing	Standing			Summer	24.4	23		Acceptable	Acceptable
	Autumn	15.3	14.6		Walking	Standing			Autumn	26.1	25.1		Acceptable	Acceptable
	Winter	22.8	21.4		Uncomfortable	Uncomfortable			Winter	38.8	37.3		Unacceptable	Unacceptable
26	Annual	12.6	13.1		Standing	Standing		26	Annual	20.8	20.4		Acceptable	Acceptable
	Spring	13.3	14		Standing	Standing			Spring	21.8	21.6		Acceptable	Acceptable
	Summer	11.2	11.9		Sitting	Sitting			Summer	18.6	18.3		Acceptable	Acceptable
	Autumn	12.5	13		Standing	Standing			Autumn	20.6	20.1		Acceptable	Acceptable
	Winter	18.1	18.4		Walking	Walking			Winter	29.8	28.6		Acceptable	Acceptable
27	Annual	14.3	14		Standing	Standing		27	Annual	21.6	21.4		Acceptable	Acceptable
	Spring	15.6	15.3		Walking	Walking			Spring	23.3	23.1		Acceptable	Acceptable
	Summer	13.2	12.9		Standing	Standing			Summer	19.5	19.4		Acceptable	Acceptable
	Autumn	13.4	13.1		Standing	Standing			Autumn	20.4	20.2		Acceptable	Acceptable
	Winter	18.2	17.9		Walking	Walking			Winter	28.3	28		Acceptable	Acceptable
28	Annual	14.8	16.8	20%	Standing	Walking		28	Annual	25.8	28.9	31%	Accentable	Accentable
20	Spring	14.0	17	20%	Standing	Walking		20	Spring	26.2	20.3	31%	Acceptable	Accentable
	Summor	12.2	13.0	17%	Standing	Standing			Summer	20.2	23.0	25%	Acceptable	Accentable
	Autumn	14.1	16	10%	Standing	Walking			Autumn	21.4	23.3	20%	Acceptable	Acceptable
	Wintor	22.2	25	27%	Uncomfortable	Uncomfortable			Wintor	24.7	21.1 12.1	199/	Linaccontable	Linaccontable
	vvinter	22.5	25	21 /0	Unconnortable	Unconnontable			VVIIILEI	30.0	43.4	40 /6	Unacceptable	Unacceptable
29	Annual	21.5	22.8		Uncomfortable	Uncomfortable		29	Annual	32.3	32.6		Unacceptable	Unacceptable
	Spring	21.8	23.1		Uncomfortable	Uncomfortable			Spring	32.8	33.1		Unacceptable	Unacceptable
	Summer	16.8	17.8		Walking	Walking			Summer	25.3	25.7		Acceptable	Acceptable
	Autumn	20.2	21.4		Uncomfortable	Uncomfortable			Autumn	30.5	30.8		Acceptable	Acceptable
	Winter	32.8	34.6		Dangerous	Dangerous			Winter	48.7	48.9		Unacceptable	Unacceptable
20	اممیردا	10.1	10 5		Ctonding	Standing		20	Annual	22.0	22.6		Assentable	Assentable
30	Spring	12.1	13.5		Standing	Standing		- 30	Spring	22.0	23.0		Acceptable	Acceptable
	Summer	13.3	13.7		Stanuing	Stanuing			Summer	23.3	23.9		Acceptable	Acceptable
	Autumon	11.4	11.7		Simily	Sitting			Autumn	19.0	20		Acceptable	Acceptable
	Autumn	13	13.4		Standing	Standing			Autumn	22.4	23		Acceptable	Acceptable
	winter	19.3	19.7		Uncomfortable	Uncomfortable			winter	33.1	34.8		Unacceptable	Unacceptable
31	Annual	13.6	14.4		Standing	Standing		31	Annual	21.2	21.9		Acceptable	Acceptable
	Spring	14.5	15.3		Standing	Walking			Spring	22.3	23.1		Acceptable	Acceptable
	Summer	12.4	13.3		Standing	Standing			Summer	18.4	19.3		Acceptable	Acceptable
	Autumn	13.4	14		Standing	Standing			Autumn	20.7	21.3		Acceptable	Acceptable
	Winter	19.1	19.9		Uncomfortable	Uncomfortable			Winter	29.8	30.4		Acceptable	Acceptable
			<u> </u>		0.111	0.00				40 7	44.0		A	
32	Annual	6.1	6.4		Sitting	Sitting		32	Annual	10.7	11.3		Acceptable	Acceptable
	Spring	6.6	6.9		Sitting	Sitting			Spring	11.2	11.6		Acceptable	Acceptable
	Summer	5.6	5.9		Sitting	Sitting			Summer	9	9.3		Acceptable	Acceptable
	Autumn	5.8	6		Sitting	Sitting			Autumn	10.4	10.9		Acceptable	Acceptable
	Winter	7.7	8.4		Sitting	Sitting			Winter	14.6	15.9		Acceptable	Acceptable

Pedestrian Wind Study September 24, 2013

			Con	nfort Category	y	NOTE: Percent change is	Effective Gust							
Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
33	Annual	12.5	11.7		Standing	Sitting	greater than 10%	33	Annual	21.2	20.8		Acceptable	Acceptable
	Spring	13.3	12.4		Standing	Standing			Spring	22.5	21.9		Acceptable	Acceptable
	Summer	11.5	10.6		Sitting	Sitting			Summer	19.2	18.6		Acceptable	Acceptable
	Autumn	12.1	11.4		Standing	Sitting			Autumn	20.6	20.2		Acceptable	Acceptable
	Winter	16.5	16.4		Walking	Walking			Winter	28.4	29.4		Acceptable	Acceptable
					-	-								
34	Annual	15.5	15.8		Walking	Walking		34	Annual	23.5	24.2		Acceptable	Acceptable
	Spring	16.5	16.9		Walking	Walking			Spring	24.9	25.5		Acceptable	Acceptable
	Summer	13.9	14.3		Standing	Standing			Summer	20.4	20.9		Acceptable	Acceptable
	Autumn	15.1	15.5		Walking	Walking			Autumn	23	23.7		Acceptable	Acceptable
	Winter	21.5	21.9		Uncomfortable	Uncomfortable			Winter	32.6	33.5		Unacceptable	Unacceptable
35	Annual	11.5	11.4		Sitting	Sitting		35	Annual	19.3	19.9		Acceptable	Acceptable
	Spring	12	11.8		Standing	Sitting			Spring	20	20.4		Acceptable	Acceptable
	Summer	9.6	9.3		Sitting	Sitting			Summer	15.6	15.6		Acceptable	Acceptable
	Autumn	10.9	10.9		Sitting	Sitting			Autumn	18.5	19		Acceptable	Acceptable
	Winter	15.5	15.8		Walking	Walking			Winter	26.4	27.9		Acceptable	Acceptable
36	Annual	10.7	14 9	42%	Sitting	Standing		36	Annual	17 7	24.1	64%	Accentable	Accentable
30	Spring	11.2	14.5	42 /0 27%	Sitting	Walking		50	Spring	19.6	24.1	57%	Acceptable	Acceptable
	Summer	0.2	11 /	22%	Sitting	Sitting			Summer	14.6	18 /	38%	Acceptable	Acceptable
	Autumn	9.2 10.2	14	22 /0	Sitting	Standing			Autumn	14.0	22.6	57%	Acceptable	Acceptable
	Mintor	14.6	22.2	769/	Standing	Lincomfortable			Mintor	10.9	22.0	1169/	Acceptable	Lincocontoblo
	winter	14.0	22.2	70%	Standing	Unconnonable			winter	24	33.0	110%	Acceptable	Unacceptable
37	Annual	10	10		Sitting	Sitting		37	Annual	19.7	20		Acceptable	Acceptable
	Spring	10.3	10.2		Sitting	Sitting			Spring	19.9	20.2		Acceptable	Acceptable
	Summer	8	7.9		Sitting	Sitting			Summer	15	15.2		Acceptable	Acceptable
	Autumn	9.6	9.6		Sitting	Sitting			Autumn	18.8	19.1		Acceptable	Acceptable
	Winter	14.5	14.6		Standing	Standing			Winter	28.6	29.3		Acceptable	Acceptable
38	Annual	15.7	17.8	21%	Walking	Walking		38	Annual	25.2	28.5	33%	Acceptable	Acceptable
	Spring	16	18	20%	Walking	Walking		00	Spring	25.6	29	34%	Accentable	Acceptable
	Summer	12.3	13.6	13%	Standing	Standing			Summer	19.6	21.9	23%	Acceptable	Acceptable
	Autumn	14.8	16.7	19%	Standing	Walking			Autumn	23.8	26.8	30%	Accentable	Acceptable
	Winter	23.8	27.1	33%	Uncomfortable	Dangerous			Winter	38	43.2	52%	Unaccentable	Unaccentable
	Winter	20.0	27.1	0070	Onconnontable	Dangerous			Winter	00	40.2	5270	Onacceptable	onacceptable
39	Annual	18.2	24.8	66%	Walking	Uncomfortable		39	Annual	29.3	36.4	71%	Acceptable	Unacceptable
	Spring	18.3	25	67%	Walking	Uncomfortable			Spring	29.7	36.9	72%	Acceptable	Unacceptable
	Summer	16.3	19.6	33%	Walking	Uncomfortable			Summer	25.3	28.9	36%	Acceptable	Acceptable
	Autumn	17.9	23.6	57%	Walking	Uncomfortable			Autumn	28.4	34.7	63%	Acceptable	Unacceptable
	Winter	27.2	36	88%	Dangerous	Dangerous			Winter	43.5	53.6	101%	Unacceptable	Unacceptable
40	Annual	16.2	16.2		Walking	Walking		40	Annual	24	24.6		Acceptable	Acceptable
	Spring	16.9	16.4		Walking	Walking			Spring	25	25		Acceptable	Acceptable
	Summer	13.9	13.5		Standing	Standing			Summer	20.9	21 1		Acceptable	Acceptable
	Autumn	15.6	15.6		Walking	Walking			Autumn	23.4	24.1		Acceptable	Acceptable
	Winter	23.4	23.6		Uncomfortable	Uncomfortable			Winter	33.9	35.3		Unacceptable	Unacceptable

	Comfort Category						NOTE: Percent change is	Effective Gust						
Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
41	Annual	18.8	16.3	-25%	Walking	Walking	greater than 10%	41	Annual	25.9	23.5		Acceptable	Acceptable
	Spring	20.1	17.3	-28%	Uncomfortable	Walking			Spring	27.6	24.9		Acceptable	Acceptable
	Summer	17.4	14.6	-28%	Walking	Standing			Summer	23.8	21	-28%	Acceptable	Acceptable
	Autumn	18.4	16.1	-23%	Walking	Walking			Autumn	25.2	23.1		Acceptable	Acceptable
	Winter	26.1	23.7		Uncomfortable	Uncomfortable			Winter	35.6	33.5		Unacceptable	Unacceptable
													·	
42	Annual	14	13.2		Standing	Standing		42	Annual	21.6	21		Acceptable	Acceptable
	Spring	15.1	14.3		Walking	Standing			Spring	22.9	22		Acceptable	Acceptable
	Summer	13.1	12.3		Standing	Standing			Summer	19.3	18.2		Acceptable	Acceptable
	Autumn	13.7	13.2		Standing	Standing			Autumn	21	20.5		Acceptable	Acceptable
	Winter	19	19.3		Uncomfortable	Uncomfortable			Winter	29.9	30.1		Acceptable	Acceptable
43	Annual	16	11.6	-44%	Walking	Sitting		43	Annual	23.3	19.9	-34%	Acceptable	Acceptable
	Spring	17	12.3	-47%	Walking	Standing			Spring	24.8	20.8	-40%	Acceptable	Acceptable
	Summer	14.6	10	-46%	Standing	Sitting			Summer	20.9	16.6	-43%	Acceptable	Acceptable
	Autumn	15.4	11.4	-40%	Walking	Sitting			Autumn	22.5	19.3	-32%	Acceptable	Acceptable
	Winter	21.2	16.8	-44%	Uncomfortable	Walking			Winter	31.6	28.3	-33%	Unacceptable	Acceptable
44	Annual	21	20.3		Uncomfortable	Uncomfortable		44	Annual	31.9	31.3		Unacceptable	Unacceptable
	Spring	21.2	20.6		Uncomfortable	Uncomfortable			Spring	32.4	31.8		Unacceptable	Unacceptable
	Summer	16.2	15.8		Walking	Walking			Summer	24.6	24.2		Acceptable	Acceptable
	Autumn	19.7	19.1		Uncomfortable	Uncomfortable			Autumn	30	29.4		Acceptable	Acceptable
	Winter	31.1	30.3		Dangerous	Dangerous			Winter	47.1	46.3		Unacceptable	Unacceptable
45	Annual	12.8	14.9	21%	Standing	Standing		45	Annual	23.4	25.3		Acceptable	Acceptable
	Spring	13	15.2	22%	Standing	Walking			Spring	23.8	25.8		Acceptable	Acceptable
	Summer	10.6	12	14%	Sitting	Standing			Summer	19.3	20.8		Acceptable	Acceptable
	Autumn	12.2	14.3	21%	Standing	Standing			Autumn	22.4	24.4		Acceptable	Acceptable
	Winter	19.5	21.9	24%	Uncomfortable	Uncomfortable			Winter	35.1	36.8		Unacceptable	Unacceptable
46	Annual	10.6	15.8	52%	Sitting	Walking		46	Annual	20.3	25.5	52%	Acceptable	Acceptable
	Spring	11.2	17.1	59%	Sitting	Walking			Spring	21.2	27.4	62%	Acceptable	Acceptable
	Summer	9.6	15.3	57%	Sitting	Walking			Summer	18	24.3	63%	Acceptable	Acceptable
	Autumn	10.4	15.3	49%	Sitting	Walking			Autumn	19.9	24.7	48%	Acceptable	Acceptable
	Winter	14.7	21	63%	Standing	Uncomfortable			Winter	28.7	33.9	52%	Acceptable	Unacceptable
47	Annual	25.3	22.1	-32%	Uncomfortable	Uncomfortable		47	Annual	37.1	33.6		Unacceptable	Unacceptable
	Spring	26.4	22.8	-36%	Uncomfortable	Uncomfortable			Spring	38.4	34.4	-40%	Unacceptable	Unacceptable
	Summer	21	18.3	-27%	Uncomfortable	Walking			Summer	30.3	27.3		Acceptable	Acceptable
	Autumn	24.2	21.3	-29%	Uncomfortable	Uncomfortable			Autumn	35.4	32.1		Unacceptable	Unacceptable
	Winter	38.4	32.8	-56%	Dangerous	Dangerous			Winter	55.6	49.6	-60%	Unacceptable	Unacceptable
48	Annual	16.2	16.6		Walking	Walking		48	Annual	26.1	27.5		Acceptable	Acceptable
	Sprina	16.7	17.1		Walking	Walking		-	Sprina	26.8	28.2		Acceptable	Acceptable
	Summer	13.2	13.1		Standing	Standing			Summer	21	21.6		Acceptable	Acceptable
	Autumn	15.5	15.7		Walking	Walking			Autumn	24.8	25.9		Acceptable	Acceptable
	Winter	24.8	25.4		Uncomfortable	Uncomfortable			Winter	39.5	41.9		Unacceptable	Unacceptable

			Con	nfort Category		NOTE: Percent change is				Eff	ective Gust	
Sensor	Season	No-Build	Build	% Change No-Build Category	Build Category	only shown for changes	Sensor	Season	No-Build	Build	% Change No-Build Category	Build Category
49	Annual	11.1	10.5	Sitting	Sitting	greater than 10%	49	Annual	21.8	20.9	Acceptable	Acceptable
	Spring	11.4	10.8	Sitting	Sitting			Spring	22.3	21.4	Acceptable	Acceptable
	Summer	8.7	8.3	Sitting	Sitting			Summer	17	16.5	Acceptable	Acceptable
	Autumn	10.5	10	Sitting	Sitting			Autumn	20.6	19.9	Acceptable	Acceptable
	Winter	16.5	15.5	Walking	Walking			Winter	32	30.8	Unacceptable	Acceptable
				Ū.	Ū							
50	Annual	16	16.4	Walking	Walking		50	Annual	27.4	27.6	Acceptable	Acceptable
	Spring	16.3	16.7	Walking	Walking			Spring	27.7	28	Acceptable	Acceptable
	Summer	12.5	12.8	Standing	Standing			Summer	21.2	21.4	Acceptable	Acceptable
	Autumn	15.1	15.4	Walking	Walking			Autumn	25.7	25.9	Acceptable	Acceptable
	Winter	24.3	25	Uncomfortable	Uncomfortable			Winter	41.4	41.8	Unacceptable	Unacceptable
51	Annual	19	18.9	Uncomfortable	Walking		51	Annual	29.5	29.3	Acceptable	Acceptable
	Spring	19.3	19.3	Uncomfortable	Uncomfortable			Spring	30	30	Acceptable	Acceptable
	Summer	14.8	14.8	Standing	Standing			Summer	22.8	22.9	Acceptable	Acceptable
	Autumn	18	17.9	Walking	Walking			Autumn	27.8	27.7	Acceptable	Acceptable
	Winter	28.1	28	Dangerous	Dangerous			Winter	42.9	42.7	Unacceptable	Unacceptable
52	Annual	17	17	Walking	Walking		52	Annual	27.7	27.7	Acceptable	Acceptable
-	Spring	17.8	17.6	Walking	Walking		-	Spring	29.1	28.9	Acceptable	Acceptable
	Summer	15	15	Walking	Walking			Summer	24.7	24.8	Acceptable	Acceptable
	Autumn	16.4	16.4	Walking	Walking			Autumn	26.8	26.8	Acceptable	Acceptable
	Winter	25.1	24.9	Uncomfortable	Uncomfortable			Winter	39.3	39.3	Unacceptable	Unacceptable
53	Annual	20	20.4	Uncomfortable	Lincomfortable		53	Annual	29.2	29.3	Accentable	Accentable
	Spring	20.9	20.4	Lincomfortable	Lincomfortable		00	Spring	30.4	30.4	Acceptable	Accentable
	Summor	19.1	19.4	Walking	Walking			Summor	25.0	26	Acceptable	Acceptable
	Autumn	19.5	10.4	Lincomfortable	Lincomfortable			Autumn	28.4	28.6	Acceptable	
	Winter	28.2	28.7	Dangerous	Dangerous			Winter	20.4 /1 /	20.0 /1.6	Linaccentable	Inaccentable
	Winter	20.2	20.7	Dangerous	Dangerous			vvinter	41.4	41.0	Onacceptable	Unacceptable
54	Annual	16	15.8	Walking	Walking		54	Annual	25.5	25.5	Acceptable	Acceptable
	Spring	16.5	16.4	Walking	Walking			Spring	26.2	26.2	Acceptable	Acceptable
	Summer	12.7	12.7	Standing	Standing			Summer	20.2	20.4	Acceptable	Acceptable
	Autumn	15.3	15.1	Walking	Walking			Autumn	24.3	24.3	Acceptable	Acceptable
	Winter	24	23.2	Uncomfortable	Uncomfortable			Winter	37.1	36.9	Unacceptable	Unacceptable
55	Annual	12.4	11.7	Standing	Sitting		55	Annual	20.5	19.6	Acceptable	Acceptable
	Spring	12.7	11.9	Standing	Sitting			Spring	21	20.1	Acceptable	Acceptable
	Summer	9.7	9.1	Sitting	Sitting			Summer	15.9	15.2	Acceptable	Acceptable
	Autumn	11.7	11	Sitting	Sitting			Autumn	19.3	18.4	Acceptable	Acceptable
	Winter	18.9	17.9	Walking	Walking			Winter	30.6	29.1	Acceptable	Acceptable
56	Annual	11.4	11	Sittina	Sittina		56	Annual	19.2	18.6	Acceptable	Acceptable
	Sprina	11.9	11.5	Sittina	Sitting			Sprina	19.9	19.4	Acceptable	Acceptable
	Summer	9.6	9.4	Sittina	Sittina			Summer	15.9	15.7	Acceptable	Acceptable
	Autumn	10.9	10.5	Sitting	Sitting			Autumn	18.4	17.9	Acceptable	Acceptable
	Winter	16.8	16.1	Walking	Walking			Winter	27.5	26.6	Acceptable	Acceptable

			Corr	nfort Category		NOTE: Percent change is				Eff	ective Gust		
Sensor	Season	No-Build	Build	% Change No-Build Category	Build Category	only shown for changes	Sensor	Season	No-Build	Build	% Change No	-Build Category	Build Category
57	Annual	16.3	16.4	Walking	Walking	greater than 10%	57	Annual	24.4	24.6		Acceptable	Acceptable
	Spring	17.2	17.3	Walking	Walking			Spring	25.6	25.8		Acceptable	Acceptable
	Summer	13.7	14.1	Standing	Standing			Summer	20.1	20.4		Acceptable	Acceptable
	Autumn	15.8	15.9	Walking	Walking			Autumn	23.6	23.7		Acceptable	Acceptable
	Winter	23.6	23.4	Uncomfortable	Uncomfortable			Winter	34.6	34.4		Unacceptable	Unacceptable
	Appuel	111	115	Stonding	Standing		50	Appual	24.6	247		Accontable	Acceptable
50	Spring	14.4	14.5	Standing	Walking		50	Spring	24.0	24.7		Acceptable	Acceptable
	Spring	14.9	10.1	Standing	Valking			Spring	25.3	25.4		Acceptable	Acceptable
	Summer	12.2	12.5	Standing	Standing			Summer	19.9	20		Acceptable	Acceptable
	Autumn	13.9	14.1	Standing	Standing			Autumn	23.6	23.7		Acceptable	Acceptable
	winter	21.2	21.2	Uncomfortable	Uncomfortable			winter	35.5	35.5		Unacceptable	Unacceptable
59	Annual	17.3	17.8	Walking	Walking		59	Annual	26	26.3		Acceptable	Acceptable
	Spring	18	18.5	Walking	Walking			Spring	27	27.4		Acceptable	Acceptable
	Summer	14.6	15.2	Standing	Walking			Summer	21.1	21.5		Acceptable	Acceptable
	Autumn	16.7	17.2	Walking	Walking			Autumn	24.9	25.2		Acceptable	Acceptable
	Winter	24.8	25.2	Uncomfortable	Uncomfortable			Winter	36.7	37.2		Unacceptable	Unacceptable
60	Annual	124	12	Standing	Standing		60	Annual	22.3	21.8		Accentable	Accentable
	Spring	12.1	12.2	Standing	Standing		00	Spring	22.0	22.2		Accentable	Accentable
	Summer	10	9.9	Sitting	Sitting			Summer	18.1	17.9		Accentable	Accentable
	Autumn	11.8	11.6	Sitting	Sitting			Autumn	21.3	21		Accentable	Acceptable
	Winter	17.6	17.1	Walking	Walking			Winter	31.7	31		Unacceptable	Unacceptable
61	Annual	17.0	16.4	Malling	\\(alling		61	Annual	26.0	25.0		Assentable	Assestable
	Annual	17.0	10.1	Walking	Walking		01	Annual	20.9	25.9		Acceptable	Acceptable
	Spring	17.7	10.3	Waiking Oten dia a	vvaiking Oten die e			Spring	27.3	26.3		Acceptable	Acceptable
	Summer	14.3	13.3	Standing	Standing			Summer	22.5	21.9		Acceptable	Acceptable
	Autumn	16.7	15.5	Waiking	vvaiking			Autumn	25.8	25.1		Acceptable	Acceptable
	winter	27.3	24.9	Dangerous	Uncomfortable			winter	40.3	38.6		Unacceptable	Unacceptable
62	Annual	10.2	9.5	Sitting	Sitting		62	Annual	17.8	17.4		Acceptable	Acceptable
	Spring	10.8	10.1	Sitting	Sitting			Spring	18.7	18.2		Acceptable	Acceptable
	Summer	8	7.6	Sitting	Sitting			Summer	14.2	14.2		Acceptable	Acceptable
	Autumn	9.7	9.2	Sitting	Sitting			Autumn	17	16.8		Acceptable	Acceptable
	Winter	14.4	13.1	Standing	Standing			Winter	24.8	23.9		Acceptable	Acceptable
63	Annual	21	19.2	Uncomfortable	Uncomfortable		63	Annual	33.6	31.4		Unacceptable	Unacceptable
	Spring	21.7	19.8	Uncomfortable	Uncomfortable			Sprina	34.3	32.1		Unacceptable	Unacceptable
	Summer	16.9	15.4	Walking	Walking			Summer	26.8	24.9		Acceptable	Acceptable
	Autumn	19.9	18.3	Uncomfortable	Walking			Autumn	31.7	29.7		Unacceptable	Acceptable
	Winter	32.5	29.5	Dangerous	Dangerous			Winter	51	47.5		Unacceptable	Unacceptable
64	Annual	20.7	18.8	Lincomfortable	Walking		64	Annual	31	28.9		Linaccentable	Accentable
	Spring	20.7	10.0	Lincomfortable	Incomfortable		04	Spring	31.7	20.3		Inaccentable	Accentable
	Summer	21.1	167	Walking	Walking			Summer	25	25.2		Accontable	Accontable
1	Auturen	10.4	10.7	Vvaikiiy	Walking			Autumn	20 7	20.2		Accontable	Accontable
	Winter	19.7	10.Z		Dangorous			Wintor	29.1	20 /1 2	40%		
	vvinter	31.2	21	-42% Dangerous	Dangerous			winter	40.1	41.2	-4970	Unacceptable	Unacceptable

	Comfort Category						NOTE: Percent change is	Effective Gust						
Sensor	Season	No-Build	Build	% Change	No-Build Category	Sensor	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
65	Annual	23.4	19.2	-42%	Uncomfortable	Uncomfortable	greater than 10%	65	Annual	34.1	29	-51%	Unacceptable	Acceptable
	Spring	23.8	19.6	-42%	Uncomfortable	Uncomfortable			Spring	34.6	29.5	-51%	Unacceptable	Acceptable
	Summer	18.9	16.1	-28%	Walking	Walking			Summer	27.8	24.7	-31%	Acceptable	Acceptable
	Autumn	22.3	18.7	-36%	Uncomfortable	Walking			Autumn	32.5	28.4	-41%	Unacceptable	Acceptable
	Winter	35.2	28.4	-68%	Dangerous	Dangerous			Winter	51.1	42.5	-86%	Unacceptable	Unacceptable
66	Annual	23.9	27.9	40%	Uncomfortable	Dangerous		66	Annual	34.6	37.4		Unacceptable	Unacceptable
	Spring	24.3	28.4	41%	Uncomfortable	Dangerous			Spring	35.3	38		Unacceptable	Unacceptable
	Summer	19	21.6	26%	Uncomfortable	Uncomfortable			Summer	27.9	29		Acceptable	Acceptable
	Autumn	22.5	26.3	38%	Uncomfortable	Uncomfortable			Autumn	32.9	35.3		Unacceptable	Unacceptable
	Winter	35.9	41.9	60%	Dangerous	Dangerous			Winter	52.1	55.7		Unacceptable	Unacceptable
67	Annual	22	31	90%	Uncomfortable	Dangerous		67	Annual	32.9	40.8	79%	Unacceptable	Unacceptable
	Spring	22.4	31.6	92%	Uncomfortable	Dangerous			Spring	33.5	41.4	79%	Unacceptable	Unacceptable
	Summer	17.3	23.9	66%	Walking	Uncomfortable			Summer	26.2	31.6	54%	Acceptable	Unacceptable
	Autumn	20.8	29.2	84%	Uncomfortable	Dangerous			Autumn	31.2	38.4	72%	Unacceptable	Unacceptable
	Winter	33	46.3	133%	Dangerous	Dangerous			Winter	49.2	60.3	111%	Unacceptable	Unacceptable
					-	-							-	
68	Annual	11.5	11.4		Sitting	Sitting		68	Annual	21	21		Acceptable	Acceptable
	Spring	11.7	11.8		Sitting	Sitting			Spring	21.4	21.5		Acceptable	Acceptable
	Summer	9.4	9.7		Sitting	Sitting			Summer	17.1	17.4		Acceptable	Acceptable
	Autumn	11	11.1		Sitting	Sitting			Autumn	20.1	20.3		Acceptable	Acceptable
	Winter	16.3	16.1		Walking	Walking			Winter	29.8	29.6		Acceptable	Acceptable
69	Annual	15	15.2		Walking	Walking		69	Annual	25.7	25.7		Acceptable	Acceptable
	Spring	15.2	15.4		Walking	Walking			Spring	26.1	26.1		Acceptable	Acceptable
	Summer	13.6	13.8		Standing	Standing			Summer	23.3	23.2		Acceptable	Acceptable
	Autumn	14.8	15		Standing	Walking			Autumn	25.3	25.2		Acceptable	Acceptable
	Winter	21.4	21.6		Uncomfortable	Uncomfortable			Winter	36.8	36.7		Unacceptable	Unacceptable
70	Annual	17.5	16.4		Walking	Walking		70	Annual	27.8	26.8		Acceptable	Acceptable
	Spring	17.7	16.6		Walking	Walking			Spring	28.2	27.2		Acceptable	Acceptable
	Summer	13.4	12.6		Standing	Standing			Summer	21.3	20.7		Acceptable	Acceptable
	Autumn	16.6	15.7		Walking	Walking			Autumn	26.5	25.6		Acceptable	Acceptable
	Winter	27.6	25.8		Dangerous	Uncomfortable			Winter	43.6	42		Unacceptable	Unacceptable
74	A	00.5	40.0		l la se arfente la la			74	A	04.4	00.0		Unanantahla	Assestable
	Annual	20.5	19.3		Uncomionable	Uncomionable			Annual	31.4	30.2		Unacceptable	Acceptable
	Spring	21	19.8		Uncomfortable	Uncomfortable			Spring	32.1	31.1		Unacceptable	Unacceptable
	Summer	16.6	15.8		vvaiking	Walking			Summer	25.4	24.6		Acceptable	Acceptable
	Autumn	19.6	18.5		Uncomfortable	vvaiking			Autumn	30	28.9		Acceptable	Acceptable
	winter	31.2	29.2		Dangerous	Dangerous			winter	47.1	45		Unacceptable	Unacceptable
72	Annual	22.6	21.6		Uncomfortable	Uncomfortable		72	Annual	33.8	32.4		Unacceptable	Unacceptable
	Sprina	23	22		Uncomfortable	Uncomfortable			Sprina	34.4	33.1		Unacceptable	Unacceptable
	Summer	18.9	18 1		Walking	Walking			Summer	28.2	27 1		Acceptable	Acceptable
	Autumn	21 7	20.8		Uncomfortable	Uncomfortable			Autumn	32.4	31.3		Unacceptable	Unacceptable
	Winter	33.6	31 7		Dangerous	Dangerous			Winter	50.1	47.6		Unacceptable	Unacceptable
	**intoi	00.0	01.7		Dungerous	Dungerous			WILLOI	00.1	-1.U		Chacoptable	Chaocoptable

			Corr	fort Category			NOTE: Percent change is							
Sensor	Season	No-Build	Build	% Change	No-Build Category	Sensor	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
73	Annual	23.1	21.7		Uncomfortable	Uncomfortable	greater than 10%	73	Annual	32.5	31.8		Unacceptable	Unacceptable
	Spring	23.5	22.5		Uncomfortable	Uncomfortable			Spring	33.2	33		Unacceptable	Unacceptable
	Summer	18	17.9		Walking	Walking			Summer	25.8	26.2		Acceptable	Acceptable
	Autumn	21.8	20.9		Uncomfortable	Uncomfortable			Autumn	30.9	30.6		Acceptable	Acceptable
	Winter	33.9	31.2		Dangerous	Dangerous			Winter	47.1	45.1		Unacceptable	Unacceptable
						-								
74	Annual	22.5	23.5		Uncomfortable	Uncomfortable		74	Annual	32.9	33.6		Unacceptable	Unacceptable
	Spring	22.8	24.4		Uncomfortable	Uncomfortable			Spring	33.6	35.1		Unacceptable	Unacceptable
	Summer	17.5	19.5	20%	Walking	Uncomfortable			Summer	25.8	27.8		Acceptable	Acceptable
	Autumn	21.2	22.6		Uncomfortable	Uncomfortable			Autumn	31.2	32.3		Unacceptable	Unacceptable
	Winter	32.9	33.6		Dangerous	Dangerous			Winter	47.9	47.6		Unacceptable	Unacceptable
75	Annual	19.6	25.8	62%	Uncomfortable	Uncomfortable		75	Annual	32.5	36	35%	Unacceptable	Unacceptable
	Spring	19.9	26.2	63%	Uncomfortable	Uncomfortable			Spring	32.9	36.6	37%	Unacceptable	Unacceptable
	Summer	15.1	19.9	48%	Walking	Uncomfortable			Summer	25	27.8	28%	Acceptable	Acceptable
	Autumn	18.5	24.4	59%	Walking	Uncomfortable			Autumn	30.5	34	35%	Acceptable	Unacceptable
	Winter	28.8	37.9	91%	Dangerous	Dangerous			Winter	47.8	52.2		Unacceptable	Unacceptable
						-								
76	Annual	15.3	24.1	88%	Walking	Uncomfortable		76	Annual	26.4	34.8	84%	Acceptable	Unacceptable
	Spring	15.5	24.5	90%	Walking	Uncomfortable			Spring	26.8	35.3	85%	Acceptable	Unacceptable
	Summer	11.8	18.5	67%	Sitting	Walking			Summer	20.3	26.7	64%	Acceptable	Acceptable
	Autumn	14.5	22.7	82%	Standing	Uncomfortable			Autumn	25	32.8	78%	Acceptable	Unacceptable
	Winter	22.1	35.4	133%	Uncomfortable	Dangerous			Winter	38.3	50.9	126%	Unacceptable	Unacceptable
						-								
77	Annual	11.7	14.1	24%	Sitting	Standing		77	Annual	20.7	23.5	28%	Acceptable	Acceptable
	Spring	12	14.3	23%	Standing	Standing			Spring	21.2	23.8	26%	Acceptable	Acceptable
	Summer	9.1	11	19%	Sitting	Sitting			Summer	15.9	18.1	22%	Acceptable	Acceptable
	Autumn	11.1	13.4	23%	Sitting	Standing			Autumn	19.6	22.2	26%	Acceptable	Acceptable
	Winter	16.7	20.3	36%	Walking	Uncomfortable			Winter	29.1	33.4	43%	Acceptable	Unacceptable
78	Annual	13	16.4	34%	Standing	Walking		78	Annual	21.8	26.4	46%	Acceptable	Acceptable
	Spring	13.3	16.5	32%	Standing	Walking			Spring	22.4	26.7	43%	Acceptable	Acceptable
	Summer	10.4	12.9	25%	Sitting	Standing			Summer	17.4	20.6	32%	Acceptable	Acceptable
	Autumn	12.3	15.4	31%	Standing	Walking			Autumn	20.7	24.9	42%	Acceptable	Acceptable
	Winter	18.9	24.5	56%	Walking	Uncomfortable			Winter	31.3	38.9	76%	Unacceptable	Unacceptable
79	Annual	19	17.9		Uncomfortable	Walking		79	Annual	27.4	27.3		Acceptable	Acceptable
	Spring	20.1	18.8		Uncomfortable	Walking			Spring	28.9	28.4		Acceptable	Acceptable
	Summer	16.7	15.5		Walking	Walking			Summer	24	23.7		Acceptable	Acceptable
	Autumn	18.6	17.6		Walking	Walking			Autumn	27.1	26.8		Acceptable	Acceptable
	Winter	26.3	24.9		Uncomfortable	Uncomfortable			Winter	38.4	38.2		Unacceptable	Unacceptable
80	Annual	14.1	16.1	20%	Standing	Walking		80	Annual	22.1	25.9	38%	Acceptable	Acceptable
	Spring	14.6	16		Standing	Walking			Spring	22.9	26	31%	Acceptable	Acceptable
	Summer	12.1	13.1		Standing	Standing			Summer	18.8	21	22%	Acceptable	Acceptable
	Autumn	13.8	15.4	16%	Standing	Walking			Autumn	21.6	24.8	32%	Acceptable	Acceptable
	Winter	20	24.3	43%	Uncomfortable	Uncomfortable			Winter	31.3	39.4	81%	Unacceptable	Unacceptable

SensorSeasonNo-BuildBuild% ChangeNo-BuildSensoronly shown for changes greater than 10%SensorSensorSensorSensorNo-BuildBuild% Change% ChangeNo81Annual15.515.3WalkingWalkingWalkingSensor81Annual22.922.6	No-Build Category Bu	uild Catogory
81 Annual 15.5 15.3 Walking Walking greater than 10% 81 Annual 22.9 22.6	Accontable	unu category
	Acceptable	Acceptable
Spring 16.2 15.9 Walking Walking Spring 23.7 23.3	Acceptable	Acceptable
Summer 13.5 13.4 Standing Standing Summer 19.4 19.2	Acceptable	Acceptable
Autumn 15.1 14.9 Walking Standing Autumn 22.3 22.1	Acceptable	Acceptable
Winter 21.7 21.6 Uncomfortable Uncomfortable Winter 31.8 31.7	Unacceptable L	Unacceptable
82 Annual 14.9 14.8 Standing Standing 82 Annual 23.3 24.3	Acceptable	Acceptable
Spring 15.7 15.3 Walking Walking Spring 24.5 25	Acceptable	Acceptable
Summer 13.3 13.1 Standing Standing Summer 20.5 20.6	Acceptable	Acceptable
Autumn 14.7 14.6 Standing Standing Autumn 22.9 23.7	Acceptable	Acceptable
Winter 20.8 20.9 Uncomfortable Uncomfortable Winter 32.4 34	Unacceptable L	Unacceptable
		·
83 Annual 11.7 16 43% Sitting Walking 83 Annual 20.6 25.4 48%	Acceptable	Acceptable
Spring 12 16.2 42% Standing Walking Spring 21.2 25.8 46%	Acceptable	Acceptable
Summer 9.3 12.4 31% Standing Summer 16.5 19.5 30%	Acceptable	Acceptable
Autumn 11.2 15 38% Sitting Walking Autumn 19.9 23.9 40%	Acceptable	Acceptable
Winter 16.5 23.8 73% Walking Uncomfortable Winter 29 37 80%	Acceptable L	Unacceptable
84 Annual 13.2 16.4 32% Standing Walking 84 Annual 23 26.3 33%	Acceptable	Acceptable
Spring 13.6 16.7 31% Standing Walking Spring 23.7 26.9 32%	Acceptable	Acceptable
Summer 10.2 12.6 24% Sitting Standing Summer 18.1 20.3 22%	Acceptable	Acceptable
Autumn 12.5 15.4 29% Standing Walking Autumn 21.9 24.8 29%	Acceptable	Acceptable
Winter 18.8 24.4 56% Walking Uncomfortable Winter 33.1 38.8 57%	Unacceptable L	Unacceptable
85 Annual 19.5 18.7 Uncomfortable Walking 85 Annual 30.4 29	Acceptable	Acceptable
Spring 20.9 20.2 Uncomfortable Uncomfortable Spring 32.3 30.9	Unacceptable	Acceptable
Summer 18.1 17.5 Walking Walking Summer 27.6 26.5	Acceptable	Acceptable
Autumn 18.9 18.1 Walking Walking Autumn 29.4 28.1	Acceptable	Acceptable
Winter 26.4 24.9 Uncomfortable Uncomfortable Winter 42 39.4	Unacceptable L	Unacceptable
		·
86 Annual 26.4 26.5 Uncomfortable Uncomfortable 86 Annual 36.5 36.3	Unacceptable L	Unacceptable
Spring 26.8 26.9 Uncomfortable Uncomfortable Spring 37.1 36.9	Unacceptable L	Unacceptable
Summer 20.6 20.8 Uncomfortable Uncomfortable Summer 28.5 28.5	Acceptable	Acceptable
Autumn 24.8 24.9 Uncomfortable Uncomfortable Autumn 34.3 34.2	Unacceptable L	Unacceptable
Winter 38.5 38.7 Dangerous Dangerous Winter 53.1 52.9	Unacceptable L	Unacceptable
87 Annual 26.9 25.5 Uncomfortable Uncomfortable 87 Annual 36.4 35.4	Unacceptable L	Unacceptable
Spring 27.3 26 Dangerous Uncomfortable Spring 37.1 36.1	Unacceptable L	Unacceptable
Summer 20.6 19.6 Uncomfortable Uncomfortable Summer 27.9 27.1	Acceptable	Acceptable
Autumn 25.2 24 Uncomfortable Uncomfortable Autumn 34.2 33.3	Unacceptable L	Unacceptable
Winter 39.4 37.9 Dangerous Dangerous Winter 52.9 51.8	Unacceptable L	Unacceptable
	·····	
88 Annual 31.5 28.4 Dangerous Dangerous 88 Annual 38 35.2	Unacceptable L	Unacceptable
Spring 32.7 29.7 Dangerous Dangerous Spring 39.7 37	Unacceptable L	Unacceptable
Summer 26 24.1 Uncomfortable Uncomfortable Summer 32.1 30.5	Unacceptable	Acceptable
Autumn 30.3 27.5 Dangerous Dangerous Autumn 36.8 34.1	Unacceptable L	Unacceptable
Winter 43.8 39.7 Dangerous Dangerous Winter 52.4 48.4	Unacceptable L	Unacceptable

Pedestrian Wind Study
September 24, 2013

			Com	fort Category			NOTE: Percent change is				Eff	ective Gust		
Sensor	Season	No-Build	Build	% Change	No-Build Category	Sensor	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
89	Annual	16.4	16.9		Walking	Walking	greater than 10%	89	Annual	27.2	27.2		Acceptable	Acceptable
	Spring	17.7	18.3		Walking	Walking			Spring	29	29		Acceptable	Acceptable
	Summer	13.2	14.5		Standing	Standing			Summer	21.7	22.8		Acceptable	Acceptable
	Autumn	15.5	16		Walking	Walking			Autumn	25.8	25.8		Acceptable	Acceptable
	Winter	21.8	22.2		Uncomfortable	Uncomfortable			Winter	37.1	37.1		Unacceptable	Unacceptable
						-								
90	Annual	9.3	8.6		Sitting	Sitting		90	Annual	16.4	15.7		Acceptable	Acceptable
	Spring	9.6	9		Sitting	Sitting			Spring	17.1	16.3		Acceptable	Acceptable
	Summer	7.1	6.6		Sitting	Sitting			Summer	12.7	12.2		Acceptable	Acceptable
	Autumn	8.8	8.2		Sitting	Sitting			Autumn	15.6	15		Acceptable	Acceptable
	Winter	14.6	13.5		Standing	Standing			Winter	24.8	23.5		Acceptable	Acceptable
91	Annual	16.9	17.4		Walking	Walking		91	Annual	26.5	27.3		Acceptable	Acceptable
-	Spring	17.7	18.1		Walking	Walking			Spring	27.7	28.4		Acceptable	Acceptable
	Summer	15.3	15.7		Walking	Walking			Summer	23.8	24.4		Acceptable	Acceptable
	Autumn	16.5	17 1		Walking	Walking			Autumn	25.9	26.8		Acceptable	Acceptable
	Winter	23.2	24.3		Uncomfortable	Uncomfortable			Winter	36.6	38.1		Unacceptable	Unacceptable
92	Annual	13.7	13.6		Standing	Standing		92	Annual	25.1	25.3		Acceptable	Acceptable
	Spring	14.4	14.4		Standing	Standing			Spring	26.2	26.4		Acceptable	Acceptable
	Summer	10.8	11.2		Sitting	Sitting			Summer	20.3	21		Acceptable	Acceptable
	Autumn	13	13.1		Standing	Standing			Autumn	24	24.4		Acceptable	Acceptable
	Winter	19.1	18.6		Uncomfortable	Walking			Winter	35.4	35		Unacceptable	Unacceptable
93	Annual	21.5	19.7		Uncomfortable	Uncomfortable		93	Annual	35.7	33.6		Unacceptable	Unacceptable
	Sprina	21.7	20		Uncomfortable	Uncomfortable			Sprina	36.2	34.2		Unacceptable	Unacceptable
	Summer	16.5	15.1		Walking	Walking			Summer	27.2	25.6		Acceptable	Acceptable
	Autumn	20.1	18.5		Uncomfortable	Walking			Autumn	33.6	31.6		Unacceptable	Unacceptable
	Winter	32.1	29.5		Dangerous	Dangerous			Winter	52.9	49.8		Unacceptable	Unacceptable
01	Appuel	25.0	22.6		Uppomfortable	Uncomfortable		04	Annual	27.6	25.0		Unaccontable	Unaccontable
94	Spring	20.9	23.0		Uncomfortable	Uncomfortable		94	Spring	37.0	30.0		Unacceptable	Unacceptable
	Summor	20.3	24.3		Uncomfortable	Uncomfortable			Summer	20.2	20.0		Acceptable	Acceptable
	Autumn	19.0	19.2		Uncomfortable	Uncomfortable			Autumn	20.0	20.2		Linconstable	Linconstable
	Mintor	24.4	22.0	110/	Dengeroue	Dongorouo			Mintor	55.4	54		Unacceptable	Unacceptable
	winter	30.0	34.7	-41%	Dangerous	Dangerous			winter	90	52.0		Unacceptable	Unacceptable
95	Annual	19.2	17.1	-21%	Uncomfortable	Walking		95	Annual	29.2	27.4		Acceptable	Acceptable
	Spring	19.7	17.8		Uncomfortable	Walking			Spring	30.1	28.6		Acceptable	Acceptable
	Summer	15.1	13.4	-17%	Walking	Standing			Summer	23.4	22		Acceptable	Acceptable
	Autumn	18.1	16.1	-20%	Walking	Walking			Autumn	27.7	26		Acceptable	Acceptable
	Winter	28.4	25.1	-33%	Dangerous	Uncomfortable			Winter	42.1	39.1		Unacceptable	Unacceptable
96	Annual	18 1	19.3		Walking	Uncomfortable		96	Annual	27 9	30.7	28%	Acceptable	Accentable
	Spring	19.2	20			Uncomfortable			Spring	29.7	31.9	2070	Acceptable	Unaccentable
	Summer	14 7	15.8		Standing	Walking			Summer	23.2	25.4		Acceptable	Accentable
	Autumn	17.2	18.5		Walking	Walking			Autumn	26.7	29.4	29%	Accentable	Accentable
	Winter	26.4	27.3		Uncomfortable	Dangerous			Winter	39.7	43.3	2070	Unaccentable	Unaccentable
	A A I I I C	20.4	21.5		Cheomoriable	Dangerous			AAULTEL	53.1	40.0		onacceptable	Chacceptable

Pedestrian Wind Study
September 24, 2013

			Com	fort Categor	y		NOTE: Percent change is Effective Gust							
Sensor	Season	No-Build	Build	% Change	No-Build Category	Sensor	only shown for changes	Sensor	Season	No-Build	Build	% Change	No-Build Category	Build Category
97	Annual	15.1	19.3	42%	Walking	Uncomfortable	greater than 10%	97	Annual	25.4	31.3	59%	Acceptable	Unacceptable
	Spring	15	19.6	46%	Walking	Uncomfortable			Spring	25.5	31.9	31.9 64%	Acceptable	Unacceptable
	Summer	14.2	16.1	19%	Standing	Walking			Summer	23.5	26.3	28%	Acceptable	Acceptable
	Autumn	15	18.6	36%	Walking	Walking			Autumn	25.1	30.2	51%	Acceptable	Acceptable
	Winter	22.2	28	58%	Uncomfortable	Dangerous			Winter	37.2	45.4	82%	Unacceptable	Unacceptable
98	Annual	19.5	18.7		Uncomfortable	Walking		98	Annual	29.3	30.4		Acceptable	Acceptable
	Spring	20.7	19.6		Uncomfortable	Uncomfortable			Spring	31.4	31.7		Unacceptable	Unacceptable
	Summer	15.3	14.4		Walking	Standing			Summer	22.8	23.3		Acceptable	Acceptable
	Autumn	18.3	17.6		Walking	Walking			Autumn	27.5	28.5		Acceptable	Acceptable
	Winter	28.9	27.3		Dangerous	Dangerous			Winter	41.8	43.6		Unacceptable	Unacceptable
99	Annual	11.5	20.1	86%	Sitting	Uncomfortable		99	Annual	20.2	31.4	112%	Acceptable	Unacceptable
	Spring	11.8	20.3	85%	Sitting	Uncomfortable			Spring	20.8	31.8	110%	Acceptable	Unacceptable
	Summer	9.3	15.3	60%	Sitting	Walking			Summer	16.6	24	74%	Acceptable	Acceptable
	Autumn	10.8	18.9	81%	Sitting	Walking			Autumn	19.2	29.6	104%	Acceptable	Acceptable
	Winter	17.1	29.6	125%	Walking	Dangerous			Winter	29.5	46.2	167%	Acceptable	Unacceptable

